DOI QR코드

DOI QR Code

Tests of concrete-filled double skin CHS composite stub columns

  • Received : 2002.10.08
  • Accepted : 2002.03.05
  • Published : 2002.04.25

Abstract

This paper describes a series of compression tests carried out on concrete filled double skin tubes (CFDST). Both outer and inner tubes are cold-formed circular hollow sections (CHS). Six section sizes were chosen for the outer tubes with diameter-to-thickness ratio ranging from 19 to 57. Two section sizes are chosen for the inner tubes with diameter-to-thickness ratio of 17 and 33. The failure modes, strength, ductility and energy absorption of CFDST are compared with those of empty single skin tubes. Increased ductility and energy absorption have been observed for CFDST especially for those having slender outer tubes with larger diameter-to-thickness ratio. Predictions from several theoretical models are compared with the ultimate strength of CFDST stub columns obtained in the tests. The proposed formula was found to be in good agreement with the experimental data.

Keywords

References

  1. ACI (1995), Building Code Requirements for Reinforced Concrete (ACI, 318-95), and Commentary, American Concrete Institute, Detroit, Michigan, USA.
  2. AISC-LRFD (1999), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
  3. EC4 (1992), Design of Composite Steel and Concrete Structures, Part 1.1, General Rules and Rules for Buildings, Eurocode 4, ENV 1994 1-1, 1992.
  4. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H. (2002a), "Plastic mechanism analysis of circular tubes under pure bending", Int. J. Mech. Sci., (accepted for publication).
  5. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H. (2002b), "Plate slenderness Limits for concrete-filled tubes under pure bending", J. Constr. Steel Res., 57(11), 1141-168.
  6. Elchalakani, E., Zhao, X.L. and Grzebieta, R.H. (2002c), "Tests on concrete filled double skin (CHS Outer and SHS Inner) composite short columns under axial compression, Thin-Walled Structures, (accepted for publication).
  7. Grzebieta, R.H. (1990), "On the equilibrium approach for predicting the crush response of thin-walled mild steel structures, PhD Thesis, Monash University, Australia.
  8. Kato, B. (1996), "Column curves for steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135 https://doi.org/10.1016/S0143-974X(96)00030-2
  9. Lin, M.L. and Tsai, K.C. (2001), "Behaviour of double-skinned composite steel tubular columns subjected to combined axial and flexural loads", First Int. Conf. on Steel and Composite Structures, Pusan, Korea, 1145-1152.
  10. Montague, P. (1978), "The experimental behaviour of double skinned, composite, circular cylindrical shells under external pressure", J. Mech. Eng. Sci., 20(1), 21-34. https://doi.org/10.1243/JMES_JOUR_1978_020_005_02
  11. SAA (1991a), Structural Steel Hollow Sections, Australian Standard AS1163, Sydney.
  12. SAA (1991b), Methods for Tensile Testing of Metals, Australian Standard AS1391, Sydney.
  13. SAA (1994), Concrete Structures, Australian Standard AS3600, Sydney.
  14. SAA (1996), Cold-Formed Steel Structures, Australian/New Zealand Standard AS/NZS4600, Sydney.
  15. SAA (1998), Seel Structures, Australian/New Zealand Standard AS/NZS4100, Sydney.
  16. Shakir-Khalil, H. (1991), "Composite columns of double-skinned shells", J. Constr. Steel Res., 19, 133-152. https://doi.org/10.1016/0143-974X(91)90038-3
  17. Sugimoto, M., Yokota, S., Sonoda, K. and Yagishita, F. (1997), "A basic consideration on double skin tube-concrete composite columns", Osaka City University and Monash University Joints Seminar on Composite Tubular Structures, Osaka City University, Osaka, July.
  18. Tomlinson, M, Chapman, M., Wright, H.D., Tomlinson, A. and Jefferson, A. (1989), "Shell composite construction for shallow draft immersed tube tunnels", ICE Int. Conf. on Immersed Tube Tunnel Techniques, April, Manchester, UK.
  19. Wei, S., Mau, S.T., Vipulanadan, C. and Mantrala, S.K. (1995), "Performance of new sandwich tube under axial loading: experimental", J. Struct. Eng., ASCE, 121(12), 1806-1814. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1806)
  20. Wright, H., Oduyemi, T. and Evans, H.R. (1991a), "The experimental behaviour of double skin composite elements", J. Constr. Steel Res., 19, 91-110.
  21. Wright, H., Oduyemi, T. and Evans, H.R. (1991b), "The design of double skin composite elements", J. Const. Steel Res., 19, 111-132. https://doi.org/10.1016/0143-974X(91)90037-2
  22. Yagishita, F., Kitoh, H., Sugimoto, M., Tanihira, T. and Sonoda, K. (2000), "Double skin composite tubular columns subjected to cyclic horizontal force and constant axial force", Proc. the 6th ASCCS Conference, Los Angeles, USA, 22-24 March, 497-503.
  23. Zhao, X.L. and Grzebieta, R.H. (1999), "Void-filled SHS beams subjected to large deformation cyclic bending", J. Struct. Eng., ASCE, 125(9), 1020-1027. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1020)
  24. Zhao, X.L. and Grzebieta, R.H. (2002), "Strength and ductility of concrete filled double skin (SHS inner and SHS outer) Tubes", Thin-Walled Structures, 40(2), 199-213. https://doi.org/10.1016/S0263-8231(01)00060-X
  25. Zhao, X.L., Grzebieta, R.H., Wong, P. and Lee, C. (1999), "Void-filled RHS sections subjected to cyclic axial tension and compression", Advances in Steel Structures, S.L. Chan and J. G. Teng (eds), Elsevier, Oxford, 429-436.
  26. Zhao, X.L., Grzebieta, R.H. and Lee, C. (2002), "Void-filled cold-formed rhs braces subjected to large deformation cyclic axial loading", J. Struct. Eng., ASCE, (accepted for publication).

Cited by

  1. Compressive stress-strain model of cold-formed circular hollow section stub columns considering local buckling vol.120, 2017, https://doi.org/10.1016/j.tws.2017.09.017
  2. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns vol.60, pp.8, 2004, https://doi.org/10.1016/j.jcsr.2003.11.008
  3. Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression vol.17, pp.4, 2014, https://doi.org/10.12989/scs.2014.17.4.431
  4. Tests on stub stainless steel–concrete–carbon steel double-skin tubular (DST) columns vol.67, pp.3, 2011, https://doi.org/10.1016/j.jcsr.2010.09.010
  5. Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns vol.57, 2012, https://doi.org/10.1016/j.tws.2012.03.019
  6. Analytical behaviour of tapered CFDST stub columns under axially partial compression vol.139, 2017, https://doi.org/10.1016/j.jcsr.2017.09.023
  7. Behaviour of concrete-filled double skin rectangular steel tubular beam–columns vol.62, pp.7, 2006, https://doi.org/10.1016/j.jcsr.2005.11.008
  8. Study on concrete-filled stainless steel–carbon steel tubular (CFSCT) stub columns under compression vol.63, 2013, https://doi.org/10.1016/j.tws.2012.10.002
  9. Behavior of CFDST stub columns under preload, sustained load and chloride corrosion vol.107, 2015, https://doi.org/10.1016/j.jcsr.2014.12.023
  10. Numerical investigation on the performance of concrete-filled double-skin steel tubular members under tension vol.79, 2014, https://doi.org/10.1016/j.tws.2014.02.001
  11. Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.667
  12. Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads 2017, https://doi.org/10.1177/0954407017702986
  13. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes vol.56, 2012, https://doi.org/10.1016/j.tws.2012.03.004
  14. Concrete filled double skin tubular members subjected to bending vol.8, pp.4, 2008, https://doi.org/10.12989/scs.2008.8.4.297
  15. Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.921
  16. Concrete filled double skin circular tubular beams with large diameter-to-thickness ratio under shear vol.70, 2013, https://doi.org/10.1016/j.tws.2013.04.009
  17. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns vol.42, pp.9, 2004, https://doi.org/10.1016/j.tws.2004.03.017
  18. Concrete-filled double skin steel tubular (CFDST) beam–columns subjected to cyclic bending vol.28, pp.12, 2006, https://doi.org/10.1016/j.engstruct.2006.03.004
  19. Performance of concrete-filled double-skin circular tubes in compression vol.133, 2015, https://doi.org/10.1016/j.compstruct.2015.08.033
  20. CFDST stub columns subjected to large deformation axial loading vol.32, pp.3, 2010, https://doi.org/10.1016/j.engstruct.2009.11.015
  21. Concrete filled double skin circular stub columns under compression vol.48, pp.1, 2010, https://doi.org/10.1016/j.tws.2009.08.001
  22. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns vol.66, pp.4, 2010, https://doi.org/10.1016/j.jcsr.2009.09.014
  23. Behavior and calculation of tapered CFDST columns under eccentric compression vol.83, 2013, https://doi.org/10.1016/j.jcsr.2013.01.010
  24. Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces vol.24, pp.4, 2011, https://doi.org/10.1016/j.marstruc.2011.05.001
  25. Theoretical model for double-skinned concrete-filled-steel-tubular columns with external confinement vol.21, pp.5, 2015, https://doi.org/10.3846/13923730.2014.893913
  26. Experimental study on ultimate strength of concrete filled double tubular steel with shear connector vol.13, pp.1, 2013, https://doi.org/10.1007/s13296-013-1005-x
  27. Investigation on concrete filled double skin steel tubes (CFDSTs) under pure torsion vol.90, 2013, https://doi.org/10.1016/j.jcsr.2013.07.035
  28. Mechanical behavior of concrete filled double skin tubular circular deep beams vol.49, pp.2, 2011, https://doi.org/10.1016/j.tws.2010.10.005
  29. Hybrid FRP–concrete–steel tubular columns: Concept and behavior vol.21, pp.4, 2007, https://doi.org/10.1016/j.conbuildmat.2006.06.017
  30. Flexural Behavior of Hybrid FRP-Concrete-Steel Double-Skin Tubular Members vol.10, pp.5, 2006, https://doi.org/10.1061/(ASCE)1090-0268(2006)10:5(443)
  31. CFDST stub columns having outer circular and inner square sections under compression vol.120, 2016, https://doi.org/10.1016/j.jcsr.2015.12.005
  32. Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression vol.131, 2017, https://doi.org/10.1016/j.engstruct.2016.10.019
  33. Double skin composite construction vol.8, pp.3, 2006, https://doi.org/10.1002/pse.216
  34. Improving interface bonding of double-skinned CFST columns vol.65, pp.20, 2013, https://doi.org/10.1680/macr.13.00041
  35. Concrete-Filled Double Skin Steel Tubular Columns Exposed to ASTM E-119 Fire Curve for 60 and 90 Minutes of Fire vol.103, 2017, https://doi.org/10.1051/matecconf/201710302009
  36. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns vol.72, 2014, https://doi.org/10.1016/j.engstruct.2014.04.039
  37. Behaviour of grout-filled double skin steel tubes under compression and bending: Experiments vol.116, 2017, https://doi.org/10.1016/j.tws.2017.02.029
  38. Tensile behaviour of concrete-filled double-skin steel tubular members vol.99, 2014, https://doi.org/10.1016/j.jcsr.2014.03.011
  39. Experimental Study on Concrete-Filled Steel Tubular with External Octagon Steel Tube and Inner Circle PVC-U Pipe under Axial Compression vol.368-373, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.368-373.511
  40. Finite Element Analysis of Concrete Filled Double Skin Steel Tubes for Wind Turbine Tower vol.680, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.680.551
  41. Ultimate Axial Strength of Concrete-Filled Double Skin Steel Tubular Column Sections vol.2019, pp.1687-8094, 2019, https://doi.org/10.1155/2019/6493037
  42. Tubular composite beam-columns of annular cross-sections and their design practice vol.10, pp.2, 2010, https://doi.org/10.12989/scs.2010.10.2.109
  43. Behavior of concrete-filled double skin steel tube beam-columns vol.22, pp.5, 2002, https://doi.org/10.12989/scs.2016.22.5.1141
  44. Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns vol.26, pp.6, 2002, https://doi.org/10.12989/scs.2018.26.6.705
  45. Seismic behavior of stiffened concrete-filled double-skin tubular columns vol.27, pp.5, 2002, https://doi.org/10.12989/scs.2018.27.5.577
  46. Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns vol.168, pp.None, 2002, https://doi.org/10.1016/j.engstruct.2018.04.062
  47. Experimental investigation and analytical modelling of blind bolted flush or extended end plate connections to circular CFDST columns vol.192, pp.None, 2002, https://doi.org/10.1016/j.engstruct.2019.04.053
  48. Hybrid double tube sections utilising seawater and sea sand concrete, FRP and stainless steel vol.149, pp.None, 2002, https://doi.org/10.1016/j.tws.2020.106643
  49. Theoretical model and structural performance of assembled joint between circular CFDST column and composite beam vol.20, pp.3, 2002, https://doi.org/10.1007/s43452-020-00077-3
  50. Axisymmetric simulation of circular concrete-filled double-skin steel tubular short columns incorporating outer stainless-steel tube vol.227, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2020.111416
  51. Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section vol.38, pp.None, 2002, https://doi.org/10.1016/j.jobe.2021.102200
  52. Confining stress path-based compressive strength model of axially compressed circular concrete-filled double-skin steel tubular short columns vol.165, pp.None, 2002, https://doi.org/10.1016/j.tws.2021.107949