참고문헌
- Baetke, F. and Werner, H. (1990), "Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners", J. Wind Eng. Ind. Aerod., 35, 129-147. https://doi.org/10.1016/0167-6105(90)90213-V
- Castro, I.P. and Robins, A.G. (1977), "The flow around a surface mounted cube in uniform and turbulent streams", J. Fluid Mech., 79, 307-335. https://doi.org/10.1017/S0022112077000172
- Craft, T.J. Launder, B.E. and Suga, K. (1996), "Development and application of a cubic eddy-viscosity model of turbulence", Int. J. Heat Fluid Flow, 17(2), 108-115. https://doi.org/10.1016/0142-727X(95)00079-6
- Delaunay, D. Lakehal D. and Pierrat, D. (1995), "Numerical approach for wind loads prediction on buildings and structures", J. Wind Eng. Ind. Aerod., 57, 307-321. https://doi.org/10.1016/0167-6105(94)00112-Q
- Easom G. (2000), "Improved turbulence models for computational wind engineering", PhD thesis, School of Civil Eng., The University of Nottingham, UK.
- Hall, R. (eds) (1997), "Evaluation of modelling uncertainty", Final project report for EU contract EV5V-CT94- 0531, WS Atkins Consultants Ltd., Epsom, UK.
- He, J. and Song, C.C.S. (1992), "Computation of turbulent shear flow over surface mounted obstacle", J. Eng. Mech., ASCE, 118(11), 2282-2297. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2282)
- Holscher, N. and Niemann, H-J. (1998), "Towards quality assurance for wind tunnel tests: A comparative testing program of the Windtechnologische Gesellschaft", J. Wind. Eng. Ind. Aerod., 74-76, 599-608. https://doi.org/10.1016/S0167-6105(98)00054-3
- Hoxey, R.P. Richards, P.J. and Short, L. (2002), "A 6 m cube in an atmospheric boundary layer flow: Part 1. Full scale and wind tunnel results", Wind and Structures, 5(2-4), 165-176. https://doi.org/10.12989/was.2002.5.2_3_4.165
- Kawamoto, S. (1997), "Improved turbulence models for estimation of wind loading", J. Wind Eng. Ind. Aerod., 67-68, 589-599. https://doi.org/10.1016/S0167-6105(97)00102-5
- Kawamoto, S. and Tanahashi, T. (1994), "High-speed GSMAC-FEM for wind engineering", Comput. Methods Appl. Mech. Eng., 112, 219-226. https://doi.org/10.1016/0045-7825(94)90027-2
- Launder, B.E. and Spalding, D.B. (1974), "The numerical computation of turbulent flows", Comput. Methods Appl. Mech. Eng., 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Lee, S. and Bienkiewicz, B. (1997), "Large eddy simulation of wind effects on bluff bodies using the finite element method", J. Wind Eng. Ind. Aerod., 67-68, 601-609. https://doi.org/10.1016/S0167-6105(97)00103-7
- Leschziner, M.A. (1995), "Modelling turbulence in physically complex flows", Invited keynote lecture, XXVI IAHR Congress "Hydra 2000", London.
- Lien, F.S. and Leschziner, M.A. (1996), "Second-moment closure for three-dimensional turbulent flow around and within complex geometries", Comput. Fluids, 25(3) 237-262. https://doi.org/10.1016/0045-7930(95)00034-8
-
Mikkelsen, A.C. and Livesey, F.M. (1995), "Evaluation of the use of the numerical
$K-{\varespilon}$ model Kameleon II, for predicting wind pressures on building surfaces", J. Wind Eng. Ind. Aerod., 57, 375-389. https://doi.org/10.1016/0167-6105(95)00007-E - Murakami, S. (1997), "Current status and future trends in computational wind engineering", J. Wind Eng. Ind. Aerod., 67-68, 3-34. https://doi.org/10.1016/S0167-6105(97)00230-4
-
Murakami, S. and Mochida, A. (1988), "3-D numerical simulations of airflow around a cubic model by means of the
${\kappa}-{\varepsilon}$ model", J. Wind Eng. Ind. Aerod., 31, 283-303. https://doi.org/10.1016/0167-6105(88)90009-8 - Murakami, S. Mochida, A. and Hibi, K. (1987), "3-dimensional numerical-simulation of air-flow around a cubic model by means of large eddy simulation", J. Wind Eng. Ind. Aerod., 25(3), 291-305. https://doi.org/10.1016/0167-6105(87)90023-7
- Paterson, D.A. and Apelt, C.J. (1990), "Simulation of flow past a cube in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 35, 149-176. https://doi.org/10.1016/0167-6105(90)90214-W
-
Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the
${\kappa}-{\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46&47, 145-153. - Richards, P.J. and Younis, B.A. (1990), "Comments on 'Prediction of Wind Generated Pressure Distribution around Buildings' by E.H. Matthews", J. Wind Eng. Ind. Aerod. 34, 107-110. https://doi.org/10.1016/0167-6105(90)90152-3
- Shah, K.B. and Ferziger, J.H. (1997), "A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle", J. Wind Eng. Ind. Aerod., 67-68, 211-224. https://doi.org/10.1016/S0167-6105(97)00074-3
-
Speziale, C.G. (1987), "On nonlinear
${\kappa}-1$ and${\kappa}-{\varepsilon}$ models of turbulence", J. Fluid Mech., 178, 459-475. https://doi.org/10.1017/S0022112087001319 - Stathopoulos, T. (1997), "Computational wind engineering: past achievements and future challenges", J. Wind Eng. Ind. Aerod., 67-68, 509-532. https://doi.org/10.1016/S0167-6105(97)00097-4
- Thomas, T.G. and Williams, J.J.R. (1999), "Large eddy simulation of vortex shedding from cubic obstacle", J. Aerospace Eng., 12(4), 113-121. https://doi.org/10.1061/(ASCE)0893-1321(1999)12:4(113)
-
Tsuchiya, M., Murakami, S., Mochida, A., Kondo, K. and Ishida, Y. (1997), "Development of a new
${\kappa}-{\varepsilon}$ model for flow and pressure fields around bluff body", J. Wind Eng. Ind. Aerod., 67-68, 169-182. https://doi.org/10.1016/S0167-6105(97)00071-8 - Wiik, T. (1999), "Wind loads on low rise buildings", Doctoral dissertation, Norwegian University of Science and Technology, Trodheim, Norway.
- Yakhot, V. and Orszag, S.A. (1986), "Renormalization group analysis of turbulence", J. Scientific Computing, 1(1), 3-51. https://doi.org/10.1007/BF01061452
피인용 문헌
- Wind loads on the roof of a 6m cube vol.96, pp.6-7, 2008, https://doi.org/10.1016/j.jweia.2007.06.032
- Evaluation of CFD Simulation using RANS Turbulence Models for Building Effects on Pollutant Dispersion vol.6, pp.2, 2006, https://doi.org/10.1007/s10652-005-5656-9
- On the use of the k– model in commercial CFD software to model the neutral atmospheric boundary layer vol.95, pp.5, 2007, https://doi.org/10.1016/j.jweia.2006.08.002
- Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues vol.11, pp.1, 2008, https://doi.org/10.12989/was.2008.11.1.051
- Validation of a CFD model of wind turbine wakes with terrain effects vol.123, 2013, https://doi.org/10.1016/j.jweia.2013.08.009
- Detached Eddy Simulation of Atmospheric Flow About a Surface Mounted Cube at High Reynolds Number vol.133, pp.3, 2011, https://doi.org/10.1115/1.4003649
- CFD simulation of the atmospheric boundary layer: wall function problems vol.41, pp.2, 2007, https://doi.org/10.1016/j.atmosenv.2006.08.019
- Appropriate boundary conditions for computational wind engineering models revisited vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2010.12.008
- Improved k–ε model and wall function formulation for the RANS simulation of ABL flows vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2010.12.017
- New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering vol.97, pp.2, 2009, https://doi.org/10.1016/j.jweia.2008.12.001
- Flow reattachment on the roof of a 6m cube vol.94, pp.2, 2006, https://doi.org/10.1016/j.jweia.2005.12.002
- Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard vol.97, pp.5-6, 2009, https://doi.org/10.1016/j.jweia.2009.06.007
- Evaluation of a fast response pressure solver for flow around an isolated cube vol.10, pp.3, 2010, https://doi.org/10.1007/s10652-009-9152-5
- Providing pressure inputs to multizone building models vol.101, 2016, https://doi.org/10.1016/j.buildenv.2016.02.012
- The influence of a cubic building on a roof mounted wind turbine vol.753, 2016, https://doi.org/10.1088/1742-6596/753/2/022044
- Numerical Model Inter-comparison for Wind Flow and Turbulence Around Single-Block Buildings vol.16, pp.2, 2011, https://doi.org/10.1007/s10666-010-9236-0
- Pressures on a cubic building—Part 1: Full-scale results vol.102, 2012, https://doi.org/10.1016/j.jweia.2011.11.004
- Study of Atmospheric Boundary Layer Flows over a Coastal Cliff vol.29, pp.1, 2005, https://doi.org/10.1260/0309524054353719
- Consistent boundary conditions for flows within the atmospheric boundary layer vol.99, pp.1, 2011, https://doi.org/10.1016/j.jweia.2010.10.009
- Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings vol.96, pp.10-11, 2008, https://doi.org/10.1016/j.jweia.2008.02.014
- Numerical simulation of wind loading on roadside noise mitigation structures vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.299
- k − εsimulations of the neutral atmospheric boundary layer: analysis and correction of discretization errors on practical grids vol.70, pp.6, 2012, https://doi.org/10.1002/fld.2709
- Numerical study and comparison with experiment of dispersion of a heavier-than-air gas in a simulated neutral atmospheric boundary layer vol.110, 2012, https://doi.org/10.1016/j.jweia.2012.07.004
- Characteristics of Wind Load on Spatial Structures with Typical Shapes due to Aerodynamic Geometrical Parameters and Terrain Type vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/9738038
- Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model vol.24, pp.5, 2002, https://doi.org/10.12989/was.2017.24.5.465
- Influence of eddy viscosity parameterisation on the characteristics of turbulence and wind flow: Assessment of steady RANS turbulence model vol.27, pp.None, 2002, https://doi.org/10.1016/j.jobe.2019.100934
- Large eddy simulation of dispersion of hazardous materials released from a fire accident around a cubical building vol.28, pp.36, 2002, https://doi.org/10.1007/s11356-021-13604-3