References
- Atluri, S.N. and Zhu, T.A. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computationalmechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
- Atluri, S.N., Kim, H.G. and Cho, J.Y. (1999), "A critical assessment of the truly Meshless Local Petrov-Galerkin(MLPG), and Local Boundary Integral Equation (LBIE) methods", Comput. Mech., 24, 348-372. https://doi.org/10.1007/s004660050457
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Num. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, O. (1996), "Meshless methods: An overviewand recent developments", Comput. Meth. Appl. Mech. Eng., 139, 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
- Franke, R. (1982), "Scattered data interpolation: test of some method", Mathematics of Computation, 38(157),181-200.
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonsphericalstars", Mon. Not. Roy. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Gu, Y.T. and Liu, G.R. (2002), "A boundary point interpolation method for stress analysis of solid", Comput.Mech., 28, 47-54. https://doi.org/10.1007/s00466-001-0268-9
- Liu, G.R. (2002a), "A point assembly method for stress analysis for two-dimensional solids", Int. J. SolidsStruct., 39, 261-276. https://doi.org/10.1016/S0020-7683(01)00172-X
- Liu, G.R. (2002b), MeshFree methods-Moving beyond the Finite Element Method, CRC Press, Boca Raton.
- Liu, G.R. and Gu, Y.T. (2001a), "A point interpolation method for two-dimensional solid", Int. J. Num. MethodsEng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
- Liu, G.R. and Yang, K.Y. (1998), "A penalty method for enforcing essential boundary conditions in element freeGalerkin method", Proceeding of the 3rd HPC Asia'98, Singapore, 715-721.
- Liu, G.R., Yang, K.Y. and Wang, J.G. (2000), "A constraint moving least square method in meshless methods",Submitted.
- Liu, G.R. and Yan, L. (2000), "Modified meshless local Petrov-Galerkin method for solid mechanics",Conference on computational mechanics in Los Anglos.
- Powell, M.J.D. (1992), The Theory of Radial Basis Function Approximation in 1990, Advances in NumericalAnalysis, Eds. FW. Light, 105-203.
- Schaback, R. (1994), Approximation of Polynomials by Radial basis Functions, Wavelets, Images and SurfaceFitting, (Eds. Laurent P.J., Mehaute Le and Schumaker L.L., Wellesley Mass.), 459-466.
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New York.
- Wang, J.G. and Liu, G.R. (2002), "On the optimal shape parameters of radial basis functions used for 2-Dmeshlesss methods", Computer Methods in Applied Mechanics and Engineering, 191, 2611-2630. https://doi.org/10.1016/S0045-7825(01)00419-4
- Wendland, H. (1998), "Error estimates for interpolation by compactly supported radial basis functions of minimaldegree", J. Approximation Theory, 93, 258-396. https://doi.org/10.1006/jath.1997.3137
- Yan, L. (2002), "Development of meshless method in computational mechanics", National University ofSingapore, Thesis of M. Eng.
Cited by
- Inverse analysis of heat transfer across a multilayer composite wall with Cauchy boundary conditions vol.79, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.041
- A hybrid radial boundary node method based on radial basis point interpolation vol.33, pp.11, 2009, https://doi.org/10.1016/j.enganabound.2009.06.003
- Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics vol.37, pp.12, 2013, https://doi.org/10.1016/j.enganabound.2013.10.002
- Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter vol.86, pp.4, 2008, https://doi.org/10.1016/j.compstruct.2008.07.025
- Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains vol.33, pp.4, 2017, https://doi.org/10.1002/num.22126
- Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
- Local integration of 2-D fractional telegraph equation via moving least squares approximation vol.56, 2015, https://doi.org/10.1016/j.enganabound.2015.02.012
- A weighted nodal-radial point interpolation meshless method for 2D solid problems vol.39, 2014, https://doi.org/10.1016/j.enganabound.2013.11.007
- Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method vol.35, pp.9, 2011, https://doi.org/10.1016/j.apm.2011.02.039
- Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity vol.3, 2016, https://doi.org/10.1016/j.mex.2016.03.001
- Inverse Cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation vol.33, pp.3, 2017, https://doi.org/10.1007/s00366-016-0482-x
- A boundary radial point interpolation method (BRPIM) for 2-D structural analyses vol.15, pp.5, 2003, https://doi.org/10.12989/sem.2003.15.5.535
- A sub-domain RPIM with condensation of degree of freedom vol.37, pp.9, 2013, https://doi.org/10.1016/j.enganabound.2013.04.014
- An element-free Galerkin approach for rigid–flexible coupling dynamics in 2D state vol.310, 2017, https://doi.org/10.1016/j.amc.2017.03.040
- A local radial point interpolation method for dissipation process of excess pore water pressure vol.15, pp.6, 2005, https://doi.org/10.1108/09615530510601468
- On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations vol.105, pp.2, 2016, https://doi.org/10.1002/nme.4960
- Analysis of the Time Fractional 2-D Diffusion-Wave Equation via Moving Least Square (MLS) Approximation vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0247-7
- MODIFIED CHOLESKY DECOMPOSITION FOR SOLVING THE MOMENT MATRIX IN THE RADIAL POINT INTERPOLATION METHOD vol.11, pp.06, 2014, https://doi.org/10.1142/S0219876213500886
- More accurate results for two-dimensional heat equation with Neumann’s and non-classical boundary conditions vol.32, pp.4, 2016, https://doi.org/10.1007/s00366-016-0449-y
- Modeling vibration behavior of delaminated composite laminates using meshfree method in Hamilton system vol.36, pp.5, 2015, https://doi.org/10.1007/s10483-015-1933-7
- The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method vol.33, pp.6, 2009, https://doi.org/10.1016/j.enganabound.2009.01.001
- Local radial point interpolation method for the fully developed magnetohydrodynamic flow vol.217, pp.9, 2011, https://doi.org/10.1016/j.amc.2010.11.004
- Particle refining and coarsening method for smoothed particle hydrodynamics simulations vol.6, pp.1, 2013, https://doi.org/10.1088/1749-4699/6/1/015009
- Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping vol.312, 2016, https://doi.org/10.1016/j.jcp.2016.02.030
- A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals vol.110, pp.5, 2017, https://doi.org/10.1002/nme.5366
- Solving time-dependent engineering problems with multiquadrics vol.280, pp.3-5, 2005, https://doi.org/10.1016/j.jsv.2003.12.043
- Discrete differential operators on irregular nodes (DDIN) vol.88, pp.12, 2011, https://doi.org/10.1002/nme.3225
- Simulation of an extruded quadrupolar dielectrophoretic trap using meshfree approach vol.30, pp.11, 2006, https://doi.org/10.1016/j.enganabound.2006.03.014
- Numerical modeling of Forchheimer flow to a pumping well in a confined aquifer using the strong-form mesh-free method vol.22, pp.5, 2014, https://doi.org/10.1007/s10040-014-1136-y
- Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations vol.29, pp.12, 2005, https://doi.org/10.1016/j.enganabound.2005.07.004
- A new dual reciprocity hybrid boundary node method based on Shepard and Taylor interpolation method and Chebyshev polynomials vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.08.015
- The elastoplastic formulation of polygonal element method based on triangular finite meshes vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.119
- Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation vol.130, pp.2, 2015, https://doi.org/10.1140/epjp/i2015-15033-5
- A meshfree radial point interpolation method (RPIM) for three-dimensional solids vol.36, pp.6, 2005, https://doi.org/10.1007/s00466-005-0657-6
- Local integration of population dynamics via moving least squares approximation vol.32, pp.2, 2016, https://doi.org/10.1007/s00366-015-0424-z
- Elastic dynamic analysis of moderately thick plate using meshless LRPIM vol.22, pp.2, 2009, https://doi.org/10.1016/S0894-9166(09)60096-3
- Meshless local radial point interpolation to three-dimensional wave equation with Neumann's boundary conditions vol.93, pp.12, 2016, https://doi.org/10.1080/00207160.2015.1085032
- Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations vol.89, 2014, https://doi.org/10.1016/j.oceaneng.2014.08.007
- Local Heaviside-weighted LRPIM meshless method and its application to two-dimensional potential flows vol.59, pp.5, 2009, https://doi.org/10.1002/fld.1810
- Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) vol.181, pp.4, 2010, https://doi.org/10.1016/j.cpc.2009.12.010
- Meshfree method for 3D bulk forming analysis with lower order integration scheme vol.28, pp.10, 2004, https://doi.org/10.1016/j.enganabound.2003.11.005
- An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov–Galerkin method vol.35, pp.7, 2011, https://doi.org/10.1016/j.enganabound.2011.02.006
- The analysis of composite laminated beams using a 2D interpolating meshless technique 2018, https://doi.org/10.1007/s10409-017-0701-8
- A new hybrid boundary node method based on Taylor expansion and the Shepard interpolation method vol.102, pp.8, 2015, https://doi.org/10.1002/nme.4861
- Stability and convergence of spectral radial point interpolation method locally applied on two-dimensional pseudoparabolic equation vol.33, pp.3, 2017, https://doi.org/10.1002/num.22119
- An improved meshless method for analyzing the time dependent problems in solid mechanics vol.35, pp.12, 2011, https://doi.org/10.1016/j.enganabound.2011.05.012
- Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation vol.39, pp.7, 2016, https://doi.org/10.1002/mma.3604
- Weak-form collocation – A local meshless method in linear elasticity vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.09.010
- Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis vol.33, pp.3, 2017, https://doi.org/10.1002/num.22135
- Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation vol.50, 2015, https://doi.org/10.1016/j.enganabound.2014.08.014
- Pricing European Passport Option with Radial Basis Function vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0240-1
- Radial basis function-based pseudospectral method for static analysis of thin plates vol.71, 2016, https://doi.org/10.1016/j.enganabound.2016.07.002
- Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation vol.34, pp.4, 2010, https://doi.org/10.1016/j.enganabound.2009.10.010
- Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method vol.66, 2016, https://doi.org/10.1016/j.enganabound.2016.01.012
- Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem vol.7, pp.3, 2016, https://doi.org/10.1016/j.asej.2015.07.009
- An improved Moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates vol.64, 2016, https://doi.org/10.1016/j.enganabound.2015.12.003
- Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions vol.129, pp.11, 2014, https://doi.org/10.1140/epjp/i2014-14241-9
- MESHFREE METHODS AND THEIR COMPARISONS vol.02, pp.04, 2005, https://doi.org/10.1142/S0219876205000673
- A dual reciprocity hybrid radial boundary node method based on radial point interpolation method vol.45, pp.6, 2010, https://doi.org/10.1007/s00466-010-0469-1
- An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis vol.83, 2017, https://doi.org/10.1016/j.enganabound.2017.07.012
- Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization vol.12, pp.2, 2005, https://doi.org/10.1080/15376490490493952
- A new spectral meshless radial point interpolation (SMRPI) method: A well-behaved alternative to the meshless weak forms vol.54, 2015, https://doi.org/10.1016/j.enganabound.2015.01.004
- The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation 2016, https://doi.org/10.1007/s00521-016-2595-y
- Local Radial Point Interpolation Method and Finite Volume Method for the Fully Developed Magnetohydrodynamic Flow and Heat Transfer vol.516-517, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.516-517.170
- Domain-type RBF Collocation Methods for Biharmonic Problems vol.15, pp.08, 2018, https://doi.org/10.1142/S0219876218500780
- An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0656-9
- Assessment of higher order transverse shear deformation theories for modeling and buckling analysis of FGM plates using RBF based meshless approach pp.1573-6105, 2018, https://doi.org/10.1108/MMMS-07-2017-0069
- Numerical Simulation of Dam Break Flows Using a Radial Basis Function Meshless Method with Artificial Viscosity vol.2018, pp.1687-5605, 2018, https://doi.org/10.1155/2018/4245658
- A Hybrid Radial Boundary Node Method for Biharmonic Problems vol.243, pp.None, 2002, https://doi.org/10.4028/www.scientific.net/amr.243-249.6003
- A 3D computational meshfree model for the mechanical and thermal buckling analysis of rectangular composite laminated plates with embedded delaminations vol.24, pp.6, 2002, https://doi.org/10.1515/secm-2015-0003
- A 3D computational meshfree model for the mechanical and thermal buckling analysis of rectangular composite laminated plates with embedded delaminations vol.24, pp.6, 2002, https://doi.org/10.1515/secm-2015-0003
- Formulation of pseudospectral meshless radial point Hermit interpolation for the Motz problem and comparison to pseudospectral meshless radial point interpolation vol.16, pp.1, 2002, https://doi.org/10.1108/mmms-04-2019-0084
- Pseudospectral meshless radial point interpolation for generalized biharmonic equation in the presence of Cahn-Hilliard conditions vol.39, pp.3, 2020, https://doi.org/10.1007/s40314-020-01175-x
- Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation vol.17, pp.7, 2002, https://doi.org/10.1142/s0219876219500233
- Formulation of local numerical methods in linear elasticity vol.16, pp.5, 2020, https://doi.org/10.1108/mmms-05-2018-0094
- A weak-form interpolation meshfree method for computing underwater acoustic radiation vol.233, pp.None, 2002, https://doi.org/10.1016/j.oceaneng.2021.109105
- A meshless artificial viscosity method for wet-dry moving interfaces problems of shallow water flow vol.236, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.109447