참고문헌
- Auricchio, F. and Sacco, E. (1999), "A mixed-enhanced finite-element for the analysis of laminated composite plates", Int. J. Num. Meth. Eng., 44, 1481-1504. https://doi.org/10.1002/(SICI)1097-0207(19990410)44:10<1481::AID-NME554>3.0.CO;2-Q
- Auricchio, F. and Sacco, E. (1999), "Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT", Composite Structures, 46, 103-113. https://doi.org/10.1016/S0263-8223(99)00035-5
- Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates", Int. J. Num. Meth. Eng., 29, 533-560.
- Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Num. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805
- Chen, Wanji and Cheung, Y.K. (2000), "Refined quadrilateral element based on Midlin/Reissner plate theory", Int. J. Num. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
- Chen, Wanji and Cheung, Y.K. (2001), "Refined 9-DOF triangular Mindlin plate element, Int. J. Num. Meth. Eng., 51, 1259-1281. https://doi.org/10.1002/nme.196
- Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in finite element analysis of plates", Nucl. Eng. Design, 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis", Int. J. Num. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
- Kirchhoff, G. (1850), "Uber das gleichgewicht und bewegung einer elastischen scheibe", Journal für die reine und angewandte Math., 40, 51-88.
- Lakshminarayana, H.V. and Murthy, S.S. (1984), "A shear-flexible triangular finite element model for laminated composite plates", Int. J. Num. Meth. Eng., 20, 591-623. https://doi.org/10.1002/nme.1620200403
- Lardeur, P. and Batoz, J.L. (1989), "Composite plane analysis using a new discrete shear triangular finite element", Int. J. Num. Meth. Eng., 27, 343-359. https://doi.org/10.1002/nme.1620270209
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A higher-order theory of plate deformation. Part 2: laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18, 31-38.
- Noor, A.K. and Mathers, M.D. (1975), "Shear-flexible finite element method of laminated composite plates", NASA TN D-8044.
- Pagano, N.J. and Hatfield, S.J. (1972), "Elastic behavior of multilayered bi-directional composites", AIAA J., 10, 931-933. https://doi.org/10.2514/3.50249
- Pryor, C.W. and Barker, R.M. (1971), "A finite element analysis including transverse shear effects for application to laminated plates", AIAA J., 9, 912-917. https://doi.org/10.2514/3.6295
- Pugh, E.D., Hinton, E. and Zienkiewicz, O.C. (1978), "A study of triangular plate bending element with reduced integration", Int. J. Num. Meth. Eng., 12, 1059-1078. https://doi.org/10.1002/nme.1620120702
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stresses in composite finite elements based on first order shear deformation theory", Int. J. Num. Meth. Eng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
- Rolfes, R., Rohwer, K. and Ballerstaedt, M. (1998), "Efficient linear transverse normal stress analysis of layered composite plates", Comput. Struct., 68, 643-652. https://doi.org/10.1016/S0045-7949(98)00097-2
- Sadek, E.A.(1998), "Some serendipity finite element for the analysis of laminate plates", Comput. Struct., 69, 37- 51. https://doi.org/10.1016/S0045-7949(98)00077-7
- Satish Kumar, Y.V. and Madhujit Mukhopadhyay (2000), "A new triangular stiffened plate element for laminate analysis", Composites Science and Technology, 60, 935-943. https://doi.org/10.1016/S0266-3538(99)00190-6
- Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Comput. Struct., 55, 329-336. https://doi.org/10.1016/S0263-8223(01)00149-0
- Singh, G., Raju, K.K. and Rao, G.V. (1998), "A new lock-free, material finite element for flexure of moderately thick rectangular composite plates", Comput. Struct., 69, 609-623.
- Somashekar, B.R., Prathap, G. and Ramesh, B.C. (1987), "A field consistent four-node laminated anisotropic plate/shell element", Comput. Struct., 25(3), 345-353. https://doi.org/10.1016/0045-7949(87)90127-1
- Spilker, R.L., Jakobs, D.M. and Engelmann, B.E. (1985), "Efficient hybrid stress isoparametric elements for moderately thick and thin multiplayer plates", In: Spilker, R.L. and Reed, K.W., editors. Hybrid and Mixed Finite Element Methods, ASME, AMD-vol-73, New York.
- Sze, K.Y., He, L.W. and Cheung, Y.K. (2000), "Predictor-corrector procedures for analysis of laminated plates using standard Mindlin finite element models", Composite Structures, 50, 171-182. https://doi.org/10.1016/S0263-8223(00)00095-7
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40, 302-304. https://doi.org/10.1115/1.3422950
- Wilt, T.E., Saleeb, A.F. and Chang, T.Y. (1990), "A mixed element for laminated plates and shells", Comput. Struct., 37(4), 597-611 https://doi.org/10.1016/0045-7949(90)90048-7
- Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Num. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Num. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
피인용 문헌
- Interlaminar stress analysis of multilayered composites based on the Hu-Washizu variational theorem 2017, https://doi.org/10.1177/0021998317733532
- Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements vol.72, pp.3, 2006, https://doi.org/10.1016/j.compstruct.2005.01.001
- Two simple and efficient displacement-based quadrilateral elements for the analysis of composite laminated plates vol.61, pp.11, 2004, https://doi.org/10.1002/nme.1123
- A novel one-dimensional two-node shear-flexible layered composite beam element vol.47, pp.7, 2011, https://doi.org/10.1016/j.finel.2011.01.010
- A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization vol.1, pp.3, 2018, https://doi.org/10.1007/s42114-018-0032-7
- An Improved Four-Node Element for Analysis of Composite Plate/Shell Structures Based on Twice Interpolation Strategy vol.17, pp.6, 2002, https://doi.org/10.1142/s0219876219500208