참고문헌
- Belytschko, T., Krongauz, Y., Dolbow, J. and Gerlach, C. (1998), "On the completeness of meshfree particle methods", Int. J. Numer. Meth. Eng., 43, 785-819. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
- Benz, W. (1990), Smooth particle hydrodynamics: a review, in the Numerical Modeling of Stellar Pulsation, Editor J R. Buchler. Dordrecht Kluwer.
- Chen, J.K., Beraun, J.E. and Jih, C.J. (1999a), "An improvement for tensile instability in smoothed particle hydrodynamics", Comput. Mech., 23, 279-287. https://doi.org/10.1007/s004660050409
- Chen, J.K., Beraun, J.E. and Jih, C.J. (1999b), "Completeness of corrective smoothed particle method for linear elastodynamics", Comput. Mech., 24, 273-285. https://doi.org/10.1007/s004660050516
- Chen, J.K., Beraun, J.E. and Jih, C.J. (2001), "A corrective smoothed particle method for elastoplastic dynamics", Comput. Mech., 27, 177-187. https://doi.org/10.1007/s004660100236
- Drumheller, D.S. (1998), Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge University Press, Cambridge.
- Dyka, C.T. and Ingel, R.P. (1995), "An approach for tension instability in smoothed particle hydrodynamics (SPH)", Comput. Struct., 57, 573-580. https://doi.org/10.1016/0045-7949(95)00059-P
- Dyka, C.T., Randles, P.W. and Ingel, R.P. (1997), "Stress points for tension instability in SPH", Int. J. Numer. Meth. Eng, 40, 2325-2341. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8
- Gingold, R.A. and Monaghan J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Graff, K.F. (1975), Wave Motion in Elastic Solids. Oxford University Press, Oxford.
- Graffi, D. (1954), "Uber den reziprozitatssatz in der dynamik elastischer korper", Ingenieeur Archiv, 22, 45-46. https://doi.org/10.1007/BF00534799
- Hicks, D.L., Swegle, J.W. and Attaway, S.W. (1997), "Conservative smoothing stabilizes discrete-numerical instabilities in SPH materials dynamics computations", Applied Mathematics and Computation, 85(2-3), 209- 226. https://doi.org/10.1016/S0096-3003(96)00136-1
- Hockney, R.W. and Eastwood, J.W. (1981), Computer Simulation Using Particles, McGraw-Hill., New York.
- Johnson, G.R., Beissel, S.R. (1996), "Normalized smoothed functions for SPH impact computations", Int. J. Numer. Meth. Eng., 39, 2725-2741. https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
- Libersky, L.D. and Petschek, A.G. (1991), "Smooth particle hydrodynamics with strength of materials", In: Advances in the Free-Lagrange Method, Editors H.E. Trease, M.J. Fritts and W.P. Crowley, Springer, New York, 248-257.
- Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R. and Allahdadi, F.A. (1993), "High strain Lagrangian hydrodynamics, a three dimension SPH code for dynamic material response", J. Comp. Phys., 109, 67-75. https://doi.org/10.1006/jcph.1993.1199
- Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Molenkamp, F. (1986), "Limits to the Jaumann stress rate", Int. J. Num. Anal. Meth. Geomech., 10, 151-176. https://doi.org/10.1002/nag.1610100205
- Monaghan, J.J. (1985), "Particle methods for hydrodynamics", J. Comp. Phys. Rep., 3, 71-124. https://doi.org/10.1016/0167-7977(85)90010-3
- Monaghan, J.J. (1989), "On the problem of penetration in particle methods", J. Comp. Phys., 82, 1-20. https://doi.org/10.1016/0021-9991(89)90032-6
- Monaghan, J.J. and Gingold, R.A. (1983), "On the problem of hydrodynamics in particle methods", J. Comp. Phys., 52, 374. https://doi.org/10.1016/0021-9991(83)90036-0
- Owen, D.R.J. and Hinton, E. (1980), Finite Elements In Plasticity: Theory and Practice, Pineridge Press, Swansea, UK.
- Randles, P.W. and Libersky, L.D. (1996), "Smoothed particle hydrodynamics: Some recent improvements and applications", Comput. Methods Appl. Mech. Engrg., 139, 375-408. https://doi.org/10.1016/S0045-7825(96)01090-0
- Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Meth. Eng., 48, 1445-1662. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
- Swaddiwudhipong, S. and Liu, Z.S. (1996), "Dynamic response of large strain elasto-plastic plate and shell structures", Thin Walled Structures, 26(4), 223-239. https://doi.org/10.1016/0263-8231(96)00031-6
- Swegle, J.W. and Attaway, S.W. (1995), "On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations", Comput. Mech., 17, 151-168. https://doi.org/10.1007/BF00364078
- Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995), "Smoothed particle hydrodynamics stability analysis", J. Comp. Phys., 116, 123-134. https://doi.org/10.1006/jcph.1995.1010
피인용 문헌
- HIGH VELOCITY IMPACT DYNAMIC RESPONSE OF STRUCTURES USING SPH METHOD vol.05, pp.02, 2004, https://doi.org/10.1142/S146587630400240X
- Impact Resistant Behaviour of Lightweight Structural Elements vol.01, pp.02, 2011, https://doi.org/10.3850/S2010428611000110
- High Velocity Penetration/Perforation Using Coupled Smooth Particle Hydrodynamics-Finite Element Method vol.1, pp.4, 2010, https://doi.org/10.1260/2041-4196.1.4.489
- DYNAMIC STABILITY OF A BEAM ON AN ELASTIC FOUNDATION INCLUDING STRESS WAVE EFFECTS vol.04, pp.02, 2012, https://doi.org/10.1142/S1758825112500172
- Perforation of steel and aluminum targets using a modified Johnson–Cook material model vol.250, 2012, https://doi.org/10.1016/j.nucengdes.2012.06.026
- Numerical study of dynamic buckling for plate and shell structures vol.20, pp.2, 2005, https://doi.org/10.12989/sem.2005.20.2.241
- Numerical Simulation of Wave Propagation in Variable Cross-Section Bars vol.378-379, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.378-379.72
- Stress Wave Propagation Analysis in One-Dimensional Micropolar Rods with Variable Cross-Section Using Micropolar Wave Finite Element Method vol.10, pp.04, 2018, https://doi.org/10.1142/S1758825118500394
- Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile vol.8, pp.1, 2011, https://doi.org/10.12989/cac.2011.8.1.111
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077