DOI QR코드

DOI QR Code

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S. (Computational Mechanics Division, Institute of High Performance Computing) ;
  • Swaddiwudhipong, S. (Department of Civil Engineering, The National University of Singapore) ;
  • Koh, C.G. (Department of Civil Engineering, The National University of Singapore)
  • 투고 : 2002.05.21
  • 심사 : 2002.09.02
  • 발행 : 2002.10.25

초록

The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

키워드

참고문헌

  1. Belytschko, T., Krongauz, Y., Dolbow, J. and Gerlach, C. (1998), "On the completeness of meshfree particle methods", Int. J. Numer. Meth. Eng., 43, 785-819. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
  2. Benz, W. (1990), Smooth particle hydrodynamics: a review, in the Numerical Modeling of Stellar Pulsation, Editor J R. Buchler. Dordrecht Kluwer.
  3. Chen, J.K., Beraun, J.E. and Jih, C.J. (1999a), "An improvement for tensile instability in smoothed particle hydrodynamics", Comput. Mech., 23, 279-287. https://doi.org/10.1007/s004660050409
  4. Chen, J.K., Beraun, J.E. and Jih, C.J. (1999b), "Completeness of corrective smoothed particle method for linear elastodynamics", Comput. Mech., 24, 273-285. https://doi.org/10.1007/s004660050516
  5. Chen, J.K., Beraun, J.E. and Jih, C.J. (2001), "A corrective smoothed particle method for elastoplastic dynamics", Comput. Mech., 27, 177-187. https://doi.org/10.1007/s004660100236
  6. Drumheller, D.S. (1998), Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge University Press, Cambridge.
  7. Dyka, C.T. and Ingel, R.P. (1995), "An approach for tension instability in smoothed particle hydrodynamics (SPH)", Comput. Struct., 57, 573-580. https://doi.org/10.1016/0045-7949(95)00059-P
  8. Dyka, C.T., Randles, P.W. and Ingel, R.P. (1997), "Stress points for tension instability in SPH", Int. J. Numer. Meth. Eng, 40, 2325-2341. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8
  9. Gingold, R.A. and Monaghan J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
  10. Graff, K.F. (1975), Wave Motion in Elastic Solids. Oxford University Press, Oxford.
  11. Graffi, D. (1954), "Uber den reziprozitatssatz in der dynamik elastischer korper", Ingenieeur Archiv, 22, 45-46. https://doi.org/10.1007/BF00534799
  12. Hicks, D.L., Swegle, J.W. and Attaway, S.W. (1997), "Conservative smoothing stabilizes discrete-numerical instabilities in SPH materials dynamics computations", Applied Mathematics and Computation, 85(2-3), 209- 226. https://doi.org/10.1016/S0096-3003(96)00136-1
  13. Hockney, R.W. and Eastwood, J.W. (1981), Computer Simulation Using Particles, McGraw-Hill., New York.
  14. Johnson, G.R., Beissel, S.R. (1996), "Normalized smoothed functions for SPH impact computations", Int. J. Numer. Meth. Eng., 39, 2725-2741. https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
  15. Libersky, L.D. and Petschek, A.G. (1991), "Smooth particle hydrodynamics with strength of materials", In: Advances in the Free-Lagrange Method, Editors H.E. Trease, M.J. Fritts and W.P. Crowley, Springer, New York, 248-257.
  16. Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R. and Allahdadi, F.A. (1993), "High strain Lagrangian hydrodynamics, a three dimension SPH code for dynamic material response", J. Comp. Phys., 109, 67-75. https://doi.org/10.1006/jcph.1993.1199
  17. Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82, 1013-1024. https://doi.org/10.1086/112164
  18. Molenkamp, F. (1986), "Limits to the Jaumann stress rate", Int. J. Num. Anal. Meth. Geomech., 10, 151-176. https://doi.org/10.1002/nag.1610100205
  19. Monaghan, J.J. (1985), "Particle methods for hydrodynamics", J. Comp. Phys. Rep., 3, 71-124. https://doi.org/10.1016/0167-7977(85)90010-3
  20. Monaghan, J.J. (1989), "On the problem of penetration in particle methods", J. Comp. Phys., 82, 1-20. https://doi.org/10.1016/0021-9991(89)90032-6
  21. Monaghan, J.J. and Gingold, R.A. (1983), "On the problem of hydrodynamics in particle methods", J. Comp. Phys., 52, 374. https://doi.org/10.1016/0021-9991(83)90036-0
  22. Owen, D.R.J. and Hinton, E. (1980), Finite Elements In Plasticity: Theory and Practice, Pineridge Press, Swansea, UK.
  23. Randles, P.W. and Libersky, L.D. (1996), "Smoothed particle hydrodynamics: Some recent improvements and applications", Comput. Methods Appl. Mech. Engrg., 139, 375-408. https://doi.org/10.1016/S0045-7825(96)01090-0
  24. Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Meth. Eng., 48, 1445-1662. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
  25. Swaddiwudhipong, S. and Liu, Z.S. (1996), "Dynamic response of large strain elasto-plastic plate and shell structures", Thin Walled Structures, 26(4), 223-239. https://doi.org/10.1016/0263-8231(96)00031-6
  26. Swegle, J.W. and Attaway, S.W. (1995), "On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations", Comput. Mech., 17, 151-168. https://doi.org/10.1007/BF00364078
  27. Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995), "Smoothed particle hydrodynamics stability analysis", J. Comp. Phys., 116, 123-134. https://doi.org/10.1006/jcph.1995.1010

피인용 문헌

  1. HIGH VELOCITY IMPACT DYNAMIC RESPONSE OF STRUCTURES USING SPH METHOD vol.05, pp.02, 2004, https://doi.org/10.1142/S146587630400240X
  2. Impact Resistant Behaviour of Lightweight Structural Elements vol.01, pp.02, 2011, https://doi.org/10.3850/S2010428611000110
  3. High Velocity Penetration/Perforation Using Coupled Smooth Particle Hydrodynamics-Finite Element Method vol.1, pp.4, 2010, https://doi.org/10.1260/2041-4196.1.4.489
  4. DYNAMIC STABILITY OF A BEAM ON AN ELASTIC FOUNDATION INCLUDING STRESS WAVE EFFECTS vol.04, pp.02, 2012, https://doi.org/10.1142/S1758825112500172
  5. Perforation of steel and aluminum targets using a modified Johnson–Cook material model vol.250, 2012, https://doi.org/10.1016/j.nucengdes.2012.06.026
  6. Numerical study of dynamic buckling for plate and shell structures vol.20, pp.2, 2005, https://doi.org/10.12989/sem.2005.20.2.241
  7. Numerical Simulation of Wave Propagation in Variable Cross-Section Bars vol.378-379, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.378-379.72
  8. Stress Wave Propagation Analysis in One-Dimensional Micropolar Rods with Variable Cross-Section Using Micropolar Wave Finite Element Method vol.10, pp.04, 2018, https://doi.org/10.1142/S1758825118500394
  9. Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile vol.8, pp.1, 2011, https://doi.org/10.12989/cac.2011.8.1.111
  10. Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077