DOI QR코드

DOI QR Code

Applications of an improved estimator of the constitutive relation error to plasticity problems

  • Gallimard, L. (L.M.T. Cachan, ENS Cachan/CNRS/Univ.) ;
  • Ladeveze, P. (L.M.T. Cachan, ENS Cachan/CNRS/Univ.) ;
  • Pelle, J.P. (L.M.T. Cachan, ENS Cachan/CNRS/Univ.)
  • 투고 : 2001.02.05
  • 심사 : 2002.07.24
  • 발행 : 2002.10.25

초록

This paper presents several applications of an improved estimator of the constitutive relation error (CRE) for plasticity problems. The cumulative aspect of the CRE estimator with respect to time is analyzed and we propose a first analysis of the local effectivity indexes of the CRE estimator in plasticity.

키워드

참고문헌

  1. Babuska, I. and Rheinboldt, W. (1978), "A posteriori estimates for the finite element method", Int. J. Numer. Meth. Eng., 12, 1597-1615. https://doi.org/10.1002/nme.1620121010
  2. Babuska, I. and Rheinboldt, W. (1982), "Computational error estimates and adaptive processes for some nonlinear structural problems", Comput. Method Appl. Mech. Eng., 34, 895-937. https://doi.org/10.1016/0045-7825(82)90094-9
  3. Boroomand, B. and Zienkiewicz, O. (1998), "Recovery procedures in error estimation and adaptivity: Adaptivity in non linear problems of elasto-plasticity behaviour", In Ladevèze, P. and Oden, J., editors, Advances in Adaptive Computational Methods in Mechanics, pp.383-410. Studies in Applied Mechanics 47, Elsevier. https://doi.org/10.1016/S0922-5382(98)80022-6
  4. Cirak, F. and Ramm, E. (1998), "A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem", Comput. Method Appl. Mech. Eng., 156, 351-362. https://doi.org/10.1016/S0045-7825(97)00220-X
  5. Cirak, F. and Ramm, E. (2000), "A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem", Int. J. Numer. Meth. Eng., 47, 379-393. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<379::AID-NME776>3.0.CO;2-2
  6. Coupez, T., Fourment, L. and Chenot, J. (1998), "Adaptive solutions in industrial forming process simulation", In Ladevèze, P. and Oden, J., editors, Advances in Adaptive Computational Methods in Mechanics, pp.349- 364, Studies in Applied Mechanics 47, Elsevier. https://doi.org/10.1016/S0922-5382(98)80020-2
  7. Drucker, D. (1964), "On the postulate of stability of material in the mechanics of continua", Journal de Mécanique, 3(2), 235-249.
  8. Gallimard, L., Ladeveze, P. and Pelle, J. (1996), "Error estimation and adaptivity in elastoplasticity", Int. J. Numer. Meth. Eng., 39, 189-217. https://doi.org/10.1002/(SICI)1097-0207(19960130)39:2<189::AID-NME849>3.0.CO;2-7
  9. Gallimard, L., Ladevéze, P. and Pelle, J. (1997), "Error estimation and time-space parameters optimization for fem non-linear computation", Computers and Structures, 64, 145-156. https://doi.org/10.1016/S0045-7949(96)00164-2
  10. Gallimard, L., Ladevèze, P. and Pelle, J. (2000), "An enhanced error estimator on constitutive relation for plasticity problems", Computers and Structures, 78, 801-810. https://doi.org/10.1016/S0045-7949(00)00056-0
  11. Huerta, A., Diez, P., Rodriguez-Ferran, A. and Pijaudier-Cabot, G. (1998), "Error estimation and adaptative finite element analysis of softening solids", In Ladevèze, P. and Oden, J., editors, Advances in Adaptive Computational Methods in Mechanics, pp.333-348. Studies in Applied Mechanics 47, Elsevier. https://doi.org/10.1016/S0922-5382(98)80019-6
  12. Johnson, C. and Hansbo, P. (1992), "Adaptative finite element methods in computational mechanics", Comput. Method Appl. Mech. Eng., 101, 143-181. https://doi.org/10.1016/0045-7825(92)90020-K
  13. Ladeveze, P. (1985), "Sur une famille d'algorithmes en mécanique des structures", Comptes Rendus Acad. Sci. Paris, Série II, 300, 41-44.
  14. Ladeveze, P. (2000), "Constitutive relation error estimators for time-dependent non linear fe analysis", Comput. Method Appl. Mech. Eng., 188, 775-788. https://doi.org/10.1016/S0045-7825(99)00361-8
  15. Ladeveze, P., Coffignal, G. and Pelle, J. (1986), "Accuracy of elastoplastic and dynamic analysis", In Babu ka, I., Gago, J., de A. Oliveira, E. and Zienkiewicz, O., editors, Accuracy estimates and adaptive refinements in Finite Element Computations, pp.181-203. J. Wiley.
  16. Ladevèze, P. and Leguillon, D. (1983), "Error estimate procedure in the finite element method and application", SIAM J. Num. Anal., 20(3), 485-509. https://doi.org/10.1137/0720033
  17. Ladeveze, P. and Moes, N. (1998), "A posteriori constitutive relation error estimators for nonlinear finite element analysis and adaptive control", In Ladeveze, P. and Oden, J., editors, Advances in Adaptive Computational Methods in Mechanics, pp.231-256. Studies in Applied Mechanics 47, Elsevier. https://doi.org/10.1016/S0922-5382(98)80013-5
  18. Ladeveze, P. and Pelle, J. (2001), "Mastery of computational methods in linear and non linear mechanic", Hermes (in french).
  19. Ladeveze, P. and Rougeot, P. (1997), "New advances on a posteriori error on constitutive relation in f.e. analysis", Comput. Method Appl. Mech. Eng., 150, 239-249. https://doi.org/10.1016/S0045-7825(97)00089-3
  20. Ladeveze, P., Rougeot, P., Blanchard, P. and Moreau, J. (1999), "Local error estimators for finite element analysis", Comput. Method Appl. Mech. Eng., 176, 231-246. https://doi.org/10.1016/S0045-7825(98)00339-9
  21. Owen, D. and Hinton, E. (1986), Finite Elements in Plasticity, Pineridge Press Limited, Swansea U.K.
  22. Peraire, J. and Patera, A. (1998), "Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement", In Ladevèze, P. and Oden, J., editors, Advances in Adaptive Computational Methods, pp.199-216. Elsevier.
  23. Prudhomme, S. and Oden, J. (1999), "On goal-oriented error estimation for elliptic problems : Application to the control of pointwise errors", Comput. Method Appl. Mech. Eng., 176, 313-331. https://doi.org/10.1016/S0045-7825(98)00343-0
  24. Rannacher, R. and Stuttmeier, F. (1997), "A feedback approach to error control in finite element methods: Application to linear elasticity", Computational Mechanic, 19, 434-446. https://doi.org/10.1007/s004660050191
  25. Rannacher, R. and Stuttmeier, F. (1999), "A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity", Comput. Method Appl. Mech. Eng., 176, 331-361.
  26. Stein, E., Barthold, F., Ohnimus, S. and Schmidt, M. (1998), "Adaptive finite element in elastoplasticity with mechanical error indicators and neumann-type estimators", In Ladevèze, P. and Oden, J., editors, Advances in Adaptive Computational Methods in Mechanics, pp.81-100. Studies in Applied Mechanics 47, Elsevier. https://doi.org/10.1016/S0922-5382(98)80006-8
  27. Strouboulis, T., Babuska, I., Datta, D., Copps, K. and Gangaraj, S. (2000), "A posteriori estimation and adaptative control of the error in the quantity of interest. Part 1: A posteriori estimation of the error in the von mises stress and the stress intensity factor", Comput. Method Appl. Mech. Eng., 180, 261-274.
  28. Tie, B. and Aubry, D. (1992), "Error estimates, h adaptive strategy and hierarchical concept for non linear finite element method", In et al., C.H., editor, Numerical Methods in Engineering '92, pp.17-24. Elsevier Science Publishers.
  29. Zienkiewicz, O. and Zhu, J. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206