DOI QR코드

DOI QR Code

A fracture criterion for high-strength steel cracked bars

  • Toribio, J. (Department of Materials Engineering, University of Salamanca, E.P.S., Campus Viriato)
  • 투고 : 2002.01.08
  • 심사 : 2002.05.27
  • 발행 : 2002.08.25

초록

In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

키워드

참고문헌

  1. Astiz, M.A. (1976), "Estudio de la estabilidad de una fisura superficial en un alambre de acero de alta resistencia", Ph.D. Thesis, Polytechnic University of Madrid, Spain.
  2. Astiz, M.A. (1986), "An incompatible singular elastic element for two- and three- dimensional crack problems", Int. J. Fracture, 31, 105-124. https://doi.org/10.1007/BF00018917
  3. Astiz, M.A. and Elices, M. (1980), "On the application of the stiffness derivative method to two and three dimensional fracture problems", Proc. Second Int. Conf. Numerical Methods in Fracture Mechanics, 93-106.
  4. Astiz, M.A., Elices, M. and Valiente, A. (1986), "Numerical and experimental analysis of cracked cylindrical bars", In: Van Elst, H.C., Bakker, A. (Eds.), Fracture Control of Engineering Structures-ECF 6. EMAS, West Midlands, 65-74.
  5. Athanassiadis, A. (1979), "Stabilite, tenacite, propagation des fissures dans les fils et barres en acier", Laboratoire Central des Ponts et Chaussees. Rapport de Recherche LPC $n^{\circ}$ 89.
  6. Athanassiadis, A., Boissenot, J.M., Brevet, P., Francois, D. and Raharinaivo, A. (1981), "Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies", Int. J. Fracture, 17, 553-566. https://doi.org/10.1007/BF00681556
  7. Barsom, J.M. and Rolfe, S.T. (1987), Fracture & Fatigue Control in Structures, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  8. Blackburn, W.S. (1976), "Calculation of stress intensity factors for straight cracks in grooved and ungrooved shafts", Engng. Fracture Mech., 8, 731-736. https://doi.org/10.1016/0013-7944(76)90046-1
  9. Bui, H.D. (1977), "An integral equations method for solving the problem of a plane crack of arbitrary shape", J. Mech. Physics Solids, 25, 29-39. https://doi.org/10.1016/0022-5096(77)90018-7
  10. Bui, H.D. and Dang Van, K. (1979), "Généralisation de la théorie de la rupture de Griffith", Journal Mécanique Appliquée, 3(2), 205-225.
  11. Bush, A.J. (1976), "Experimentally determined stress-intensity factors for single-edge-crack round bars loaded in bending", Expl. Mech., 16, 249-257. https://doi.org/10.1007/BF02321148
  12. Bush, A.J. (1981), "Stress intensity factors for single-edge-crack solid and hollow round bars loaded in tension", J. Test. Eval., 9, 216-223. https://doi.org/10.1520/JTE11230J
  13. Carpinteri, A. (1992a), "Stress intensity factors for straight-fronted edge cracks in round bars", Engng. Fracture Mech., 42, 1035-1040. https://doi.org/10.1016/0013-7944(92)90142-2
  14. Carpinteri, A. (1992b), "Elliptical-arc surface cracks in round bars", Fatigue Fracture Engng. Mater. Struct., 15, 1141-1153. https://doi.org/10.1111/j.1460-2695.1992.tb00039.x
  15. D'Escatha, Y. and Labbens, R. (1978), "Remarque sur deux criteres de rupture fragile pour les problemes tridimensionnels en mode I", Journal Mecanique Appliquee, 2(4), 541-552.
  16. Daoud, O.E.K. and Cartwright, D.J. (1984), "Strain energy release rates for a straight-fronted edge crack in a circular bar subject to bending", Engng. Fracture Mech., 19, 701-707. https://doi.org/10.1016/0013-7944(84)90102-4
  17. Daoud, O.E.K. and Cartwright, D.J. (1985), "Strain energy release rate for a circular-arc edge crack in a bar under tension or bending", J. Strain Anal., 20, 53-58. https://doi.org/10.1243/03093247V201053
  18. Daoud, O.E.K., Cartwright, D.J. and Carney, M. (1978), "Strain energy release rate for a single-edge-cracked circular bar in tension", J. Strain Anal, 13, 83-89. https://doi.org/10.1243/03093247V132083
  19. Elices, M. (1985), "Fracture of steels for reinforcing and prestressing concrete", In: Sih, G.C., DiTommaso, A. (Eds.), Fracture Mechanics of Concrete: Structural Application and Numerical Calculation, Martinus Nijhoff Publishers, Dordrecht, 226-271.
  20. Elices, M., Llorca, J. and Astiz, M.A. (1994), "Fatigue of steels for concrete reinforcement and cables", In: Carpinteri, A. (Ed.), Handbook of Fatigue Crack Propagation in Metallic Structures. Elsevier, Amsterdam, 191-220.
  21. Ng, C.K. and Fenner, D.N. (1988), "Stress intensity factors for an edge cracked circular bar in tension and bending", Int. J. Fracture, 36, 291-303. https://doi.org/10.1007/BF00017205
  22. Ovejero, E. (1998), "Fractura en ambiente agresivo de aceros perlíticos con distinto grado de trefilado", Ph.D. Thesis, University of La Coruna, Spain.
  23. Parkins, R.N., Elices, M., Sanchez-Galvez, V. and Caballero, L. (1982), "Environment sensitive cracking of prestressing steels", Corros. Sci., 22, 379-405. https://doi.org/10.1016/0010-938X(82)90017-8
  24. Salah el din, A.S. and Lovegrove, J.M. (1981), "Stress intensity factors for fatigue cracking of round bars", Int. J. Fatigue, 3, 117-123. https://doi.org/10.1016/0142-1123(81)90059-1
  25. Sih, G.C. and Lee, Y.D. (1989), "Review of triaxial crack border stress and energy behaviour", Theor. Appl. Fracture Mech., 12, 1-17. https://doi.org/10.1016/0167-8442(89)90011-6
  26. Toledano, M. (1998), "Fatiga y fractura de aceros perlíticos con distinto grado de trefilado", Ph.D. Thesis, University of La Coruna, Spain.
  27. Toribio, J. (1997), "A fracture criterion for high-strength steel notched bars", Engng. Fracture Mech., 57, 391-404. https://doi.org/10.1016/S0013-7944(97)00027-1
  28. Toribio, J. and Ovejero, E. (1998a), "Effect of cold drawing on microstructure and corrosion performance of high-strength steel", Mech. Time-Dependent Mater., 1, 307-319.
  29. Toribio, J. and Ovejero, E. (1998b), "Microstructure orientation in a pearlitic steel subjected to progressive plastic deformation", J. Mater. Sci. Lett., 17, 1037-1040.
  30. Toribio, J. and Toledano, M. (1998), "Anisotropic fracture behaviour of eutectoid steels with different degrees of drawing", In: Brown, M.W., de los Ríos, E.R., Miller, K.J. (Eds.), Fracture from Defects-ECF12, EMAS, West Midlands, 685-690.
  31. Toribio, J. and Toledano, M. (2000), "Fatigue and fracture performance of cold drawn wires for prestressed concrete", Constr. Building Mater., 14, 47-53. https://doi.org/10.1016/S0950-0618(00)00003-9
  32. Valiente, A. (1980), "Criterios de fractura para alambres", Ph.D. Thesis, Polytechnic University of Madrid, Spain.
  33. Valiente, A. and Elices, M. (1998), "Premature failure of prestressed steel bars", Engng. Failure Analysis, 5, 219-227.

피인용 문헌

  1. Failure analysis of cold drawn eutectoid steel wires for prestressed concrete vol.13, pp.3, 2006, https://doi.org/10.1016/j.engfailanal.2005.03.003
  2. Surface cracks in fatigued structural components: a review vol.36, pp.12, 2013, https://doi.org/10.1111/ffe.12100
  3. A critical review of stress intensity factor solutions for surface cracks in round bars subjected to tension loading vol.16, pp.3, 2009, https://doi.org/10.1016/j.engfailanal.2008.06.023
  4. Notched double-curvature shells with cracks under pulsating internal pressure vol.86, pp.7, 2009, https://doi.org/10.1016/j.ijpvp.2008.12.007
  5. Notched shells with surface cracks under complex loading vol.48, pp.6, 2006, https://doi.org/10.1016/j.ijmecsci.2006.01.004
  6. Numerical modelling of cracking path in round bars subjected to cyclic tension and bending vol.58, 2014, https://doi.org/10.1016/j.ijfatigue.2013.03.017