References
- Dhanasekar M. and Xiao Q.Z. (2001), "Plane hybrid stress element method for 3D hollow bodies of uniformthickness", Computers and Structures, 79, 483-497. https://doi.org/10.1016/S0045-7949(00)00152-8
- Pian T.H.H. and Wu C.C. (1988), "A rational approach for choosing stress terms for hybrid finite element formulations", Int. J. Numer. Meth. Engng., 26, 2331-2343. https://doi.org/10.1002/nme.1620261014
- Pian T.H.H. and Sumihara K. (1984), "Rational approach for assumed stress finite elements", Int. J. Numer.Meth. Engng., 20, 1685-1695. https://doi.org/10.1002/nme.1620200911
- Timoshenko S.P. and Goodier J.N. (1970), Theory of Elasticity, 3rd. McGraw-Hill.
- Wu C.C. and Bufler H. (1991), "Multivariable finite elements: consistency and optimization", Science inChina(A) 34, 284-299.
- Wu C.C. and Cheung Y.K. (1995), "On optimisation approaches of hybrid stress elements", Finite ElementsAnal. Des., 21, 111-128. https://doi.org/10.1016/0168-874X(95)00023-0
- Wu C.C. and Pian T.H.H. (1977), Numerical Analysis Method of Incompatible and Hybrid Elements (inChinese), China Science Press.
- Xiao Q.Z. and Dhanasekar M. "Plane hybrid stress element for 3D problems", Proc. of the 5th Int. Conf. onComputational Structures Technology, Leuven, Belgium, Sep 2000; Finite Elements Techniques andDevelopment-edited by Topping B.H.V.; Civil-Comp Press; 147-158.
- Ye Z.M. (1997), "A new finite element formulation for planar elastic deformation", Int. J. Numer. Meth. Eng.,40, 2579-2591. https://doi.org/10.1002/(SICI)1097-0207(19970730)40:14<2579::AID-NME174>3.0.CO;2-A