Acknowledgement
Supported by : National Science Council
References
- Banerjee, J.R. (1996), "Exact dynamic stiffness matrix for composite Timoshenko beams with applications", J.Sound and Vibration, 194, 573-585. https://doi.org/10.1006/jsvi.1996.0378
- Banerjee, J.R. (1998), "Free vibration of axially loaded composite Timoshenko beams using the dynamicstiffness matrix method", Comp. and Struct., 69, 197-208. https://doi.org/10.1016/S0045-7949(98)00114-X
- Chang, C.M. (1998), "Analysis of natural frequencies and natural modes for rod and beam problems usingMultiple Reciprocity Method (MRM)", Master Thesis, Department of Harbor and River Engineering, NationalTaiwan Ocean University, Taiwan.
- Chang, J.R., Yeih, W. and Chen, J.T. (1999), "Determination of natural frequencies and natural modes using thedual BEM in conjunction with the domain partition technique", Comp. Mech., 24(1), 29-40. https://doi.org/10.1007/s004660050435
- Chen, J.T. and Chen, K.H. (1998), "Dual integral formulation for determining the acoustic modes of a twodimensionalcavity with a degenerate boundary", Engineering Analysis with Boundary Elements, 21(2), 105-116. https://doi.org/10.1016/S0955-7997(97)00094-5
- Chen, J.T., Huang, C.X. and Chen, K.H. (1999), "Determination of spurious eigenvalues and multiplicities oftrue eigenvalues using the real-part dual BEM", Comp. Mech., 24(1), 41-51. https://doi.org/10.1007/s004660050436
- Chen, J.T., Kuo, S.R. and Huang, C.X. (2001), On the True and Spurious Eigensolutions Using Circulants forReal-Part BEM, IUTAM/IACM/IABEM Symposium on BEM, Cracow, Poland, Kluwer Press, 75-85.
- Chen, J.T., Huang, C.X. and Wong, F.C. (2000), "Determination of spurious eigenvalues and multiplicities oftrue eigenvalues in the dual multiple reciprocity method using the singular value decomposition technique", J.Sound Vibration, 230(2), 203-219. https://doi.org/10.1006/jsvi.1999.2342
- Chen, J.T. and Wong, F.C. (1998), "Dual formulation of multiple reciprocity method for the acoustic mode of acavity with a thin partition", J. Sound and Vibration, 217(1), 75-95. https://doi.org/10.1006/jsvi.1998.1743
- Chiba, M. (1997), "The influence of elastic bottom plate motion on the resonant response of a liquid free surfacein a cylindrical container : a linear analysis", J. Sound and Vibration, 202(4), 417-426. https://doi.org/10.1006/jsvi.1996.0855
- Chung, I.L. (2000), "Derivation of dynamic stiffness and flexibility using dual BEM", Master Thesis,Department of Harbor and River Engineering, National Taiwan Ocean University, Taiwan.
- Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill, New York.
- Hibbeler, R.C. (1997), Structural Analysis, Prentice Hall, New York.
- Ishibashi, Y. and Orihara, H. (1996), "Nonlinear dielectric responses in resonant systems", Physica B, 219, 626-628. https://doi.org/10.1016/0921-4526(95)00833-0
- Kang, S.W., Lee, J.M. and Kang, Y.J. (1999), "Vibration analysis of arbitrarily shaped membranes using nondimensionaldynamic influence function", J. Sound and Vibration, 221(1), 117-132. https://doi.org/10.1006/jsvi.1998.2009
- Liou, D.Y., Chen, J.T. and Chen, K.H. (1999), "A new method for determining the acoustic modes of a twodimensionalsound field", J. the Chinese Institute of Civil and Hydraulic Engineering, 11(2), 299-310. (in Chinese)
- Luco, J.E. and Westmann, R.A. (1972), "Dynamic response of a rigid footing bounded to an elastic half space",J. Appl. Mech., 39, 527-534, 1972. https://doi.org/10.1115/1.3422711
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95,859-877.
- Paz, M. (1973), "Mathematical observations in structural dynamics", Comp. Struct., 3, 385-396. https://doi.org/10.1016/0045-7949(73)90025-4
- Paz, M. and Lam. D. (1975), "Power series expansion of the general stiffness matrix for beam elements", Int. J.Num. Meth. Engng., 9, 449-459. https://doi.org/10.1002/nme.1620090212
- Reid, C. and Whineray, S. (1995), "The resonant response of a simple harmonic half-oscillator", Physics LettersA, 199, 49-54. https://doi.org/10.1016/0375-9601(95)00038-5
- Samaranayake, S., Samaranayake, G. and Bajaj, A.K. (2000), "Resonant vibrations in harmonically excitedweakly coupled mechanical systems with cyclic symmetry", Chaos Solitons and Fractals, 11, 1519-1534. https://doi.org/10.1016/S0960-0779(99)00075-2
- Wearing, J.L. and Bettahar, O. (1996), "The analysis of plate bending problems using the regular direct boundaryelement method", Engineering Analysis with Boundary Elements, 16, 261-271. https://doi.org/10.1016/0955-7997(96)86002-4
- Wolf, J.P. and Song, C. (1994), "Dynamic-stiffness matrix in time domain of unbounded medium byinfinitesimal finite element", Earthq. Eng. and Struct. Dyn., 23, 1181-1198. https://doi.org/10.1002/eqe.4290231103
- Wu, Y.C. (1999), "Applications of the generalized singular value decompsition method to the eigenproblem of the Helmholtz equation", Master Thesis, Department of Harbor and River Engineering, National TaiwanOcean University, Taiwan.
- Yeih, W., Chang, J.R., Chang, C.M. and Chen, J.T. (1999), "Applications of dual MRM for determining thenatural frequencies and natural modes of a rod using the singular value decomposition method", Advances inEngineering Software, 30(7), 459-468. https://doi.org/10.1016/S0965-9978(98)00130-6
- Yeih, W., Chen, J.T. and Chang, C.M. (1999), "Applications of dual MRM for determining the naturalfrequencies and natural modes of an Euler-Bernoulli beam using the singular value decomposition method",Engineering Analysis with Boundary Elements, 23(4), 339-360. https://doi.org/10.1016/S0955-7997(98)00084-8
- Zhao, J.X., Carr, A.J. and Moss, P.J. (1997), "Calculating the dynamic stiffness matrix of 2-D foundations bydiscrete wave number indirect boundary element methods", Earthq. Eng. and Struct. Dyn., 26, 115-133. https://doi.org/10.1002/(SICI)1096-9845(199701)26:1<115::AID-EQE626>3.0.CO;2-0