DOI QR코드

DOI QR Code

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D. (School of Civil Engineering, Asian Institute of Technology) ;
  • Park, T.H. (Department of Civil and Environmental Engineering, Hanyang University)
  • 발행 : 2002.04.25

초록

Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

키워드

참고문헌

  1. ABAQUS Example problem Manual (1994), 1.
  2. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curvedfinite elements", Int. J. Numer. Meth. Engng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
  3. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation oftensorial components", Int. J. Numer. Meth. Engng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
  4. Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-nodelagrangian shell element", Int. J. Numer. Meth. Engng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
  5. Choi, C.K. and Yoo, S.W. (1991), "Geometrically nonlinear behaviour of an improved degenerate shell element",Computers and Structures, 40(3), 785-794. https://doi.org/10.1016/0045-7949(91)90245-H
  6. FINASIC User Manual, (1990), Department of Civil Engineering, Imperial College, London.
  7. Haitao, Ma. (1990), "Development of a geometrically nonlinear shell element by assumed strain methods", AsianInstitute of Technology, Dr. Thesis.
  8. Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane andshear interpolation", Int. J. Numer. Meth. Engng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
  9. Kebari, H. and Cassel, A.C. (1992), "A stabilized 9-node non-linear shell element", Int. J. Numer. Meth. Engng.,35, 37-61. https://doi.org/10.1002/nme.1620350104
  10. Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer.Meth. Engng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
  11. Kim, K.D. (1992), "Non-linear analysis of fibre-reinforced composite structures using finite elements", Ph.D.Thesis, Dept. of Civil Engineering, Imperial College, London.
  12. Kim, K.D., Park, T. and Voyiadjis, G.Z. (1998), Postbuckling, "Analysis of composite panels with imperfectiondamage", Computational Mechanics, 22, 375-387. https://doi.org/10.1007/s004660050369
  13. Kim, K.D. and Voyiadjis, G.Z. (1999), "Non-linear finite element analysis of composite panels", CompositesPart B: Engineering, 30(4), 383-394. https://doi.org/10.1016/S1359-8368(99)00010-4
  14. Lakshminaryana, H.V. and Kailashi, K. (1989), "A shear deforamble curved shell element of quadrilateralshape", Computers and Structures, 987-1001.
  15. Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large deformationanalysis of laminated shells", Int. J. Numer. Meth. Engng., 42, 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
  16. Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", in Kanok-Nukulchai et al. (eds.), Structural Engineering and Construction: Achievements, Trends and Challenges, 1168-1175.
  17. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy",Finite Elements Analysis and Design, 11, 3-20.
  18. MacNeal, R.H. (1994), Finite Elements: Their Design and Performance, Marcel Dekker., INC.
  19. Noor, A.K. and Mathers, M.D. (1976), "Anisotropy and shear deformation in laminated composite plates", AIAA,14, 282-285. https://doi.org/10.2514/3.7096
  20. Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun.Appl. Numer. Methods, 3, 173-180. https://doi.org/10.1002/cnm.1630030303
  21. Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stress in composite finite element based on first order shear deformation theory", Int. J. Numer. Meth. Engng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
  22. Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "A stress resultant geometrically exact shell model, part II thelinear theory; computational aspects", Computer Methods in Applied Mechanics and Engineering., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
  23. Somashekar, B.R., Prathap, G. and Ramesh Babu, C. (1987), "A field-consistent, four-noded, laminated,anisotropic plate/shell element", Computers and Structures, 25(3), 345-353. https://doi.org/10.1016/0045-7949(87)90127-1
  24. Timosenko, S.P. and Woinowosky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill Kogakusa.
  25. To, C.W.S. and Wang, B. (1998), "Hybrid strain-based three-node flat triangular laminated composite shellelements", Finite Elements Analysis and Design, 28, 177-207. https://doi.org/10.1016/S0168-874X(97)00037-1
  26. Yunus, S.M., Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degree offreedom", Int. J. Numer. Meth. Engng., 28, 785-800. https://doi.org/10.1002/nme.1620280405

피인용 문헌

  1. Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings vol.11, pp.12, 2010, https://doi.org/10.5762/KAIS.2010.11.12.5199
  2. Postbuckling analysis of laminated composite plates subjected to the combination of in-plane shear, compression and lateral loading vol.43, pp.18-19, 2006, https://doi.org/10.1016/j.ijsolstr.2005.08.004
  3. A 4-node co-rotational ANS shell element for laminated composite structures vol.80, pp.2, 2007, https://doi.org/10.1016/j.compstruct.2006.05.003
  4. Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element vol.109, 2014, https://doi.org/10.1016/j.compstruct.2013.10.055
  5. Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains vol.42, pp.6, 2007, https://doi.org/10.1016/j.ijnonlinmec.2007.03.011
  6. A Co-Rotational 8-Node Resultant Shell Element for Progressive Nonlinear Dynamic Failure Analysis of Laminated Composite Structures vol.14, pp.2, 2007, https://doi.org/10.1080/15376490600675299
  7. Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element vol.37, pp.2-3, 2006, https://doi.org/10.1016/j.compositesb.2005.05.007
  8. An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells vol.18, pp.6, 2004, https://doi.org/10.12989/sem.2004.18.6.807
  9. Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element vol.2016, 2016, https://doi.org/10.1155/2016/2821473
  10. A literature review on computational models for laminated composite and sandwich panels vol.1, pp.1, 2011, https://doi.org/10.2478/s13531-011-0005-x
  11. An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304
  12. A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom vol.58, pp.14, 2003, https://doi.org/10.1002/nme.854
  13. Free vibration of laminated composite skew plates with central cutouts vol.31, pp.5, 2002, https://doi.org/10.12989/sem.2009.31.5.587