References
- ABAQUS Example problem Manual (1994), 1.
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curvedfinite elements", Int. J. Numer. Meth. Engng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation oftensorial components", Int. J. Numer. Meth. Engng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
- Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-nodelagrangian shell element", Int. J. Numer. Meth. Engng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
- Choi, C.K. and Yoo, S.W. (1991), "Geometrically nonlinear behaviour of an improved degenerate shell element",Computers and Structures, 40(3), 785-794. https://doi.org/10.1016/0045-7949(91)90245-H
- FINASIC User Manual, (1990), Department of Civil Engineering, Imperial College, London.
- Haitao, Ma. (1990), "Development of a geometrically nonlinear shell element by assumed strain methods", AsianInstitute of Technology, Dr. Thesis.
- Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane andshear interpolation", Int. J. Numer. Meth. Engng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
- Kebari, H. and Cassel, A.C. (1992), "A stabilized 9-node non-linear shell element", Int. J. Numer. Meth. Engng.,35, 37-61. https://doi.org/10.1002/nme.1620350104
- Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer.Meth. Engng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
- Kim, K.D. (1992), "Non-linear analysis of fibre-reinforced composite structures using finite elements", Ph.D.Thesis, Dept. of Civil Engineering, Imperial College, London.
- Kim, K.D., Park, T. and Voyiadjis, G.Z. (1998), Postbuckling, "Analysis of composite panels with imperfectiondamage", Computational Mechanics, 22, 375-387. https://doi.org/10.1007/s004660050369
- Kim, K.D. and Voyiadjis, G.Z. (1999), "Non-linear finite element analysis of composite panels", CompositesPart B: Engineering, 30(4), 383-394. https://doi.org/10.1016/S1359-8368(99)00010-4
- Lakshminaryana, H.V. and Kailashi, K. (1989), "A shear deforamble curved shell element of quadrilateralshape", Computers and Structures, 987-1001.
- Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large deformationanalysis of laminated shells", Int. J. Numer. Meth. Engng., 42, 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", in Kanok-Nukulchai et al. (eds.), Structural Engineering and Construction: Achievements, Trends and Challenges, 1168-1175.
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy",Finite Elements Analysis and Design, 11, 3-20.
- MacNeal, R.H. (1994), Finite Elements: Their Design and Performance, Marcel Dekker., INC.
- Noor, A.K. and Mathers, M.D. (1976), "Anisotropy and shear deformation in laminated composite plates", AIAA,14, 282-285. https://doi.org/10.2514/3.7096
- Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun.Appl. Numer. Methods, 3, 173-180. https://doi.org/10.1002/cnm.1630030303
- Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stress in composite finite element based on first order shear deformation theory", Int. J. Numer. Meth. Engng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
- Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "A stress resultant geometrically exact shell model, part II thelinear theory; computational aspects", Computer Methods in Applied Mechanics and Engineering., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
- Somashekar, B.R., Prathap, G. and Ramesh Babu, C. (1987), "A field-consistent, four-noded, laminated,anisotropic plate/shell element", Computers and Structures, 25(3), 345-353. https://doi.org/10.1016/0045-7949(87)90127-1
- Timosenko, S.P. and Woinowosky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill Kogakusa.
- To, C.W.S. and Wang, B. (1998), "Hybrid strain-based three-node flat triangular laminated composite shellelements", Finite Elements Analysis and Design, 28, 177-207. https://doi.org/10.1016/S0168-874X(97)00037-1
- Yunus, S.M., Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degree offreedom", Int. J. Numer. Meth. Engng., 28, 785-800. https://doi.org/10.1002/nme.1620280405
Cited by
- Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings vol.11, pp.12, 2010, https://doi.org/10.5762/KAIS.2010.11.12.5199
- Postbuckling analysis of laminated composite plates subjected to the combination of in-plane shear, compression and lateral loading vol.43, pp.18-19, 2006, https://doi.org/10.1016/j.ijsolstr.2005.08.004
- A 4-node co-rotational ANS shell element for laminated composite structures vol.80, pp.2, 2007, https://doi.org/10.1016/j.compstruct.2006.05.003
- Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element vol.109, 2014, https://doi.org/10.1016/j.compstruct.2013.10.055
- Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains vol.42, pp.6, 2007, https://doi.org/10.1016/j.ijnonlinmec.2007.03.011
- A Co-Rotational 8-Node Resultant Shell Element for Progressive Nonlinear Dynamic Failure Analysis of Laminated Composite Structures vol.14, pp.2, 2007, https://doi.org/10.1080/15376490600675299
- Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element vol.37, pp.2-3, 2006, https://doi.org/10.1016/j.compositesb.2005.05.007
- An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells vol.18, pp.6, 2004, https://doi.org/10.12989/sem.2004.18.6.807
- Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element vol.2016, 2016, https://doi.org/10.1155/2016/2821473
- A literature review on computational models for laminated composite and sandwich panels vol.1, pp.1, 2011, https://doi.org/10.2478/s13531-011-0005-x
- An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304
- A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom vol.58, pp.14, 2003, https://doi.org/10.1002/nme.854
- Free vibration of laminated composite skew plates with central cutouts vol.31, pp.5, 2002, https://doi.org/10.12989/sem.2009.31.5.587