DOI QR코드

DOI QR Code

Free vibration analysis of Reissner plates by mixed finite element

  • Eratli, Nihal (Faculty of Civil Engineering, Istanbul Technical University) ;
  • Akoz, A. Yalcin (Faculty of Civil Engineering, Istanbul Technical University)
  • 발행 : 2002.03.25

초록

In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out by mixed finite element method based on the G$\hat{a}$teaux differential. New boundary conditions are established for plates on Pasternak foundation. This method is developed and applied to numerous problems by Ak$\ddot{o}$z and his co-workers. In dynamic analysis, the problem reduces to the solution of a standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation. The element has four nodes and bending and torsional moments, transverse shear forces, rotations and displacements are the basic unknowns. The element performance is assessed by comparison with numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic analysis. Shear locking effects are tested as far as $h/2a=10^{-6}$ and it is observed that REC32 is free from shear locking.

키워드

참고문헌

  1. Akoz, A.Y. (1985), "A new functional for bars and its applications", IV. National Applied Mechanics Meeting (in Turkish).
  2. Akoz, A.Y., Omurtag, M.H., and Dogruoglu, A.N. (1991), "The mixed finite element formulation for three dimensional bars", Int. J. Numer. Meth. Eng., 28, 225-234.
  3. Akoz, A.Y., and Uzcan (Eratli), N. (1992), "The new functional for Reissner plates and its application", Comp. and Struct., 44, 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V
  4. Akoz, A.Y., and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comp. and Struct., 60, 643-651. https://doi.org/10.1016/0045-7949(95)00418-1
  5. Akoz, A.Y., and Eratli, N. (2000), "A sectorial element based on Reissner plate theory", Int. J. Struct. Eng. and Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519
  6. Akoz, A.Y., and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Meth. Eng., 47, 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0
  7. Baker, A.J., and Pepper, D.W. (1991), Finite Elements 1-2-3, McGraw-Hill International Editions.
  8. Bardell, N.S. (1991), "Free vibration analysis of a flat plate using the hierarchical finite element method", J. Sound and Vibration, 151(2), 263-289. https://doi.org/10.1016/0022-460X(91)90855-E
  9. Batoz, J.L., and Lardeur, P. (1989), "A discrete shear triangular nine D.O.F. element for analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305
  10. Belytschko, T., Tsay, C.S., and Liu, W.R. (1981), "A stabilization matrix for the bilinear Mindlin plate element", Comp. Methods in Applied Mechanics and Engineering, 29, 313-327. https://doi.org/10.1016/0045-7825(81)90048-7
  11. Bhashyam, G.R., and Gallagher, R.H. (1984), "An approach to the inclusion of transverse shear deformation in finite element bending analysis", Comp. and Struct., 19, 35-40. https://doi.org/10.1016/0045-7949(84)90200-1
  12. Cook, R.D. (1972), "More on reduced integration and isoparametric elements", Int. J. Numer. Meth. Eng., 5, 141-148. https://doi.org/10.1002/nme.1620050113
  13. Eratli (Uzcan), N. (1995), Finite Element Formulation for Folded Plates, Ph.D.thesis (in Turkish), Department of Civil Engineering, Istanbul Technical University.
  14. Eratl , N., and Aköz, A.Y. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comp. and Struct., 65, 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8
  15. Eratli , N. (2000), "Dynamic analysis of sectorial thick plates", XI.National Applied Mechanics Meeting (in Turkish).
  16. Hinton, E., and Bicanic, N. (1979), "A comparison of Lagrangian and serendipity Mindlin plate elements for free vibration analysis", Comp. and Struct., 10, 483-493. https://doi.org/10.1016/0045-7949(79)90023-3
  17. Hughes, T.J.R., Taylor, R.L., and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Meth. Eng., 11, 1529-1547. https://doi.org/10.1002/nme.1620111005
  18. Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
  19. Katili, I. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: An extended DKQ element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
  20. Lee, Y.C., and Reissmann (1969), "Dynamic of rectangular plates", Int. J. of Engineering Science, 7, 93-113. https://doi.org/10.1016/0020-7225(69)90025-1
  21. Leissa, A.W. (1969), Vibration of Plates. NASA SP 160. Washington, D.C.: U.S. Government Printing Office.
  22. Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound and Vibration, 31, 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
  23. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech. ASME, 18, 31-38.
  24. Oden, J.T., and Reddy, J.N. (1976), An Introduction to the Mathematical Theory of Finite Elements, Wiley- Interscience, NewYork.
  25. Omurtag, M.H., and Akoz, A.Y. (1992), "Mixed finite element formulation of eccentrically stiffened cylindrical shells", Comp. and Struct., 42, 751-768. https://doi.org/10.1016/0045-7949(92)90187-5
  26. Omurtag, M.H., and Akoz, A.Y. (1993), "A compatible cylindrical shell element for stiffened cylindrical shells in a mixed finite element formulation", Comp. and Struct., 49, 363-370. https://doi.org/10.1016/0045-7949(93)90115-T
  27. Omurtag, M.H., and Akoz, A.Y. (1994), "Hyperbolic paraboloid shell analysis via mixed finite element formulation", Int. J. Numer. Meth. Eng., 37, 3037-3056. https://doi.org/10.1002/nme.1620371803
  28. Omurtag, M.H., Ozutok, A., Ozcelikors, Y., and Akoz, A.Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gâteaux differential", Int. J. Numer. Meth. Eng., 40, 295-317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
  29. Ozcelikors, Y., and Akoz, A.Y. (1993), "A mixed finite element formulation of eccentrically stiffened plates", Bulletin of the Technical University of Istanbul, 46, 257-277.
  30. Panc, V. (1975), Theories of Elastic Plates, Noordhoff International Publishing.
  31. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture (In Russian).
  32. Paswey, S.E., and Clough, R.W. (1971), "Improved numerical integration of thick slab finite elements", Int. J. Numer. Meth. Eng., 3, 545-586.
  33. Pugh, E.D.L., Hinton, E., and Zienkiewicz, O.C. (1978), "A study of quadrilateral plate bending elements with 'Reduced' integration", Int. J. Numer. Meth. Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
  34. Reddy, J.N. (1993), An Introduction to the Finite Element Method, Mc Graw-Hill International Editions.
  35. Reissner, E. (1946), "The effects of transverse shear deformation on bending of elastic plates", J. Appl. Mech. ASME, 12, 69-77.
  36. Srinivas, S., Joga, C.V., and Rao, A.K. (1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J. Sound and Vibration, 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
  37. Yuan, F., and Miller, R.E. (1988), "A rectangular finite element for moderately thick flat plates", Comp. and Struct., 30,1375-1387. https://doi.org/10.1016/0045-7949(88)90202-7
  38. Yuan, F., and Miller, R.E. (1992), "Improved rectangular element for shear deformable plates", J. Eng. Mech., ASCE, 118, 312-328. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(312)
  39. Zienkiewicz, O.C., Taylor, R.L., and Too, J. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211

피인용 문헌

  1. Transverse Vibration of Mindlin Plates on Two-Parameter Foundations by Analytical Trapezoidal p -Elements vol.131, pp.11, 2005, https://doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1140)
  2. Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid vol.42, 2012, https://doi.org/10.1016/j.oceaneng.2012.01.010
  3. Three-dimensional free vibration of thick circular plates on Pasternak foundation vol.292, pp.3-5, 2006, https://doi.org/10.1016/j.jsv.2005.08.028
  4. Dynamics of a rectangular plate resting on an elastic foundation and partially in contact with a quiescent fluid vol.317, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2008.03.022
  5. Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method vol.130, 2017, https://doi.org/10.1016/j.ijmecsci.2017.06.013
  6. Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their vol.48, pp.6, 2013, https://doi.org/10.1007/s11012-012-9669-4
  7. Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2002, https://doi.org/10.12989/sem.2020.73.1.097