References
- Akoz, A.Y. (1985), "A new functional for bars and its applications", IV. National Applied Mechanics Meeting (in Turkish).
- Akoz, A.Y., Omurtag, M.H., and Dogruoglu, A.N. (1991), "The mixed finite element formulation for three dimensional bars", Int. J. Numer. Meth. Eng., 28, 225-234.
- Akoz, A.Y., and Uzcan (Eratli), N. (1992), "The new functional for Reissner plates and its application", Comp. and Struct., 44, 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V
- Akoz, A.Y., and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comp. and Struct., 60, 643-651. https://doi.org/10.1016/0045-7949(95)00418-1
- Akoz, A.Y., and Eratli, N. (2000), "A sectorial element based on Reissner plate theory", Int. J. Struct. Eng. and Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519
- Akoz, A.Y., and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Meth. Eng., 47, 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0
- Baker, A.J., and Pepper, D.W. (1991), Finite Elements 1-2-3, McGraw-Hill International Editions.
- Bardell, N.S. (1991), "Free vibration analysis of a flat plate using the hierarchical finite element method", J. Sound and Vibration, 151(2), 263-289. https://doi.org/10.1016/0022-460X(91)90855-E
- Batoz, J.L., and Lardeur, P. (1989), "A discrete shear triangular nine D.O.F. element for analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305
- Belytschko, T., Tsay, C.S., and Liu, W.R. (1981), "A stabilization matrix for the bilinear Mindlin plate element", Comp. Methods in Applied Mechanics and Engineering, 29, 313-327. https://doi.org/10.1016/0045-7825(81)90048-7
- Bhashyam, G.R., and Gallagher, R.H. (1984), "An approach to the inclusion of transverse shear deformation in finite element bending analysis", Comp. and Struct., 19, 35-40. https://doi.org/10.1016/0045-7949(84)90200-1
- Cook, R.D. (1972), "More on reduced integration and isoparametric elements", Int. J. Numer. Meth. Eng., 5, 141-148. https://doi.org/10.1002/nme.1620050113
- Eratli (Uzcan), N. (1995), Finite Element Formulation for Folded Plates, Ph.D.thesis (in Turkish), Department of Civil Engineering, Istanbul Technical University.
- Eratl , N., and Aköz, A.Y. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comp. and Struct., 65, 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8
- Eratli , N. (2000), "Dynamic analysis of sectorial thick plates", XI.National Applied Mechanics Meeting (in Turkish).
- Hinton, E., and Bicanic, N. (1979), "A comparison of Lagrangian and serendipity Mindlin plate elements for free vibration analysis", Comp. and Struct., 10, 483-493. https://doi.org/10.1016/0045-7949(79)90023-3
- Hughes, T.J.R., Taylor, R.L., and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Meth. Eng., 11, 1529-1547. https://doi.org/10.1002/nme.1620111005
- Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
- Katili, I. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: An extended DKQ element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
- Lee, Y.C., and Reissmann (1969), "Dynamic of rectangular plates", Int. J. of Engineering Science, 7, 93-113. https://doi.org/10.1016/0020-7225(69)90025-1
- Leissa, A.W. (1969), Vibration of Plates. NASA SP 160. Washington, D.C.: U.S. Government Printing Office.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound and Vibration, 31, 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech. ASME, 18, 31-38.
- Oden, J.T., and Reddy, J.N. (1976), An Introduction to the Mathematical Theory of Finite Elements, Wiley- Interscience, NewYork.
- Omurtag, M.H., and Akoz, A.Y. (1992), "Mixed finite element formulation of eccentrically stiffened cylindrical shells", Comp. and Struct., 42, 751-768. https://doi.org/10.1016/0045-7949(92)90187-5
- Omurtag, M.H., and Akoz, A.Y. (1993), "A compatible cylindrical shell element for stiffened cylindrical shells in a mixed finite element formulation", Comp. and Struct., 49, 363-370. https://doi.org/10.1016/0045-7949(93)90115-T
- Omurtag, M.H., and Akoz, A.Y. (1994), "Hyperbolic paraboloid shell analysis via mixed finite element formulation", Int. J. Numer. Meth. Eng., 37, 3037-3056. https://doi.org/10.1002/nme.1620371803
- Omurtag, M.H., Ozutok, A., Ozcelikors, Y., and Akoz, A.Y. (1997), "Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gâteaux differential", Int. J. Numer. Meth. Eng., 40, 295-317. https://doi.org/10.1002/(SICI)1097-0207(19970130)40:2<295::AID-NME66>3.0.CO;2-2
- Ozcelikors, Y., and Akoz, A.Y. (1993), "A mixed finite element formulation of eccentrically stiffened plates", Bulletin of the Technical University of Istanbul, 46, 257-277.
- Panc, V. (1975), Theories of Elastic Plates, Noordhoff International Publishing.
- Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture (In Russian).
- Paswey, S.E., and Clough, R.W. (1971), "Improved numerical integration of thick slab finite elements", Int. J. Numer. Meth. Eng., 3, 545-586.
- Pugh, E.D.L., Hinton, E., and Zienkiewicz, O.C. (1978), "A study of quadrilateral plate bending elements with 'Reduced' integration", Int. J. Numer. Meth. Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
- Reddy, J.N. (1993), An Introduction to the Finite Element Method, Mc Graw-Hill International Editions.
- Reissner, E. (1946), "The effects of transverse shear deformation on bending of elastic plates", J. Appl. Mech. ASME, 12, 69-77.
- Srinivas, S., Joga, C.V., and Rao, A.K. (1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J. Sound and Vibration, 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
- Yuan, F., and Miller, R.E. (1988), "A rectangular finite element for moderately thick flat plates", Comp. and Struct., 30,1375-1387. https://doi.org/10.1016/0045-7949(88)90202-7
- Yuan, F., and Miller, R.E. (1992), "Improved rectangular element for shear deformable plates", J. Eng. Mech., ASCE, 118, 312-328. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(312)
- Zienkiewicz, O.C., Taylor, R.L., and Too, J. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
Cited by
- Transverse Vibration of Mindlin Plates on Two-Parameter Foundations by Analytical Trapezoidal p -Elements vol.131, pp.11, 2005, https://doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1140)
- Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid vol.42, 2012, https://doi.org/10.1016/j.oceaneng.2012.01.010
- Three-dimensional free vibration of thick circular plates on Pasternak foundation vol.292, pp.3-5, 2006, https://doi.org/10.1016/j.jsv.2005.08.028
- Dynamics of a rectangular plate resting on an elastic foundation and partially in contact with a quiescent fluid vol.317, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2008.03.022
- Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method vol.130, 2017, https://doi.org/10.1016/j.ijmecsci.2017.06.013
- Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their vol.48, pp.6, 2013, https://doi.org/10.1007/s11012-012-9669-4
- Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2002, https://doi.org/10.12989/sem.2020.73.1.097