References
-
Carrera, E. (1996), "
$C^0$ Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity", Int. J. Numer. Meth. Engng., 39, 1797-1820. https://doi.org/10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-W - Carrera, E. (1998), "Mixed layer-wise models for multilayered plates analysis", Compos. Struct., 43, 57-70. https://doi.org/10.1016/S0263-8223(98)00097-X
- Carrera, E. (1999), "Transverse normal stress effects in multilayered plates", J. Appl. Mech., ASME 66, 1004- 1011. https://doi.org/10.1115/1.2791769
- Engblom, J.J., and Ochoa, O.O. (1985), "Through the thickness stress predictions for laminated plates of advanced composite materials", Int. J. Numer. Meth. Engng., 21, 1759-1776. https://doi.org/10.1002/nme.1620211003
- Jones, R.M. (1975), Mechanics of composite materials, int. student ed., Hemisphere, New York. 210-223.
- Lo, K.H., Christensen, R.M., and Wu, E.M. (1978), "Stress solution determination for high order plat theory", Int J. Solids Struct., 14, 655-662. https://doi.org/10.1016/0020-7683(78)90004-5
- Lu, X., and Lin, D. (1992), "An interlaminar shear stress continuity theory for both thin and thick composite laminates", J. Appl. Mech., ASME 59, 502-509. https://doi.org/10.1115/1.2893752
-
Manjunatha, B.S., and Kant, T. (1993a), "New theories for symmetric/unsymmetric composite and sandwich beams with
$C^0$ finite elements", Compos. Struct., 23, 61-73. https://doi.org/10.1016/0263-8223(93)90075-2 - Manjunatha, B.S., and Kant, T. (1993b), "Different numerical techniques for the estimation of multiaxial stresses in symmetric/unsymmetric composite and sandwich beams with refined theories", J. Reinf. Plast. Compos., 12, 2-37. https://doi.org/10.1177/073168449301200101
- Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304
- Pagano, N.J. (1970), "Exact solutions for rectangular bi-directional composites and sandwich plates", J. Compos. Mater., 4, 20-35.
- Pagano, N.J., and Hatfield, S.J. (1972), "Elastic behavior of multilayered bi-directional composites", AIAA J., 10, 931-933. https://doi.org/10.2514/3.50249
- Pipes, R.B., and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial loading", J. Compos. Mater., 4, 538-548. https://doi.org/10.1177/002199837000400409
- Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3, 173-180. https://doi.org/10.1002/cnm.1630030303
- Rybicki, E.F. (1971), "Approximate three-dimensional solutions for symmetric laminates under in-plane loading", J. Compos. Mater., 5, 354-360. https://doi.org/10.1177/002199837100500305
- Shi, Y.B., and Chen, H.R. (1992), "A mixed finite element for interlaminar stress computation", Compos. Struct., 20, 127-136. https://doi.org/10.1016/0263-8223(92)90019-9
- Shimpi, R.P., and Ghugal, Y.M. (1999), "A layerwise trigonometric shear deformation theory for two layered cross-ply laminated beams", J. Reinf. Plast. Compos., 18, 1516-1543. https://doi.org/10.1177/073168449901801605
- Soldatos, K.P.A. (1992), "A general laminated plate theory accounting for continuity of displacements and transverse shear stresses at material interfaces", Compos. Struct., 20, 195-211. https://doi.org/10.1016/0263-8223(92)90026-9
- Spilker, R.L. (1982), "Hybrid stress eight node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Engng., 18, 801-828. https://doi.org/10.1002/nme.1620180602
- Srinivas, S., and Rao, A.K. (1970), "Bending vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
- Toledano, A., and Murakami, H. (1987), "A higher order laminated plate theory with improved inplane responses", Int. J. Solids Struct., 23(1), 111-131. https://doi.org/10.1016/0020-7683(87)90034-5
- Wen-Jinn, L., and Sun, C.T. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249. https://doi.org/10.1016/0045-7949(87)90147-7
- Wu, C.P., and Kuo, H.C. (1993), "An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates", Compos. Struct., 24, 29-42. https://doi.org/10.1016/0263-8223(93)90052-R
- Wu, C.P., and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25, 439-448. https://doi.org/10.1016/0263-8223(93)90191-R
- Wu, C.P., and Lin, C.C. (1993), "Analysis of sandwich plates using mixed finite element", Compos. Struct., 25, 397-405. https://doi.org/10.1016/0263-8223(93)90187-U
Cited by
- Stress Analysis of Laminated Composite and Sandwich Beams using a Novel Shear and Normal Deformation Theory vol.12, pp.7, 2015, https://doi.org/10.1590/1679-78251470
- Multi-model finite element scheme for static and free vibration analyses of composite laminated beams vol.12, pp.11, 2015, https://doi.org/10.1590/1679-78251743
- Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature vol.171, 2017, https://doi.org/10.1016/j.compstruct.2017.03.053
- Hybrid-interface finite element for laminated composite and sandwich beams vol.43, pp.13, 2007, https://doi.org/10.1016/j.finel.2007.06.013
- A NEW PARTIAL DISCRETIZATION METHODOLOGY FOR NARROW COMPOSITE BEAMS UNDER PLANE STRESS CONDITIONS vol.05, pp.03, 2008, https://doi.org/10.1142/S021987620800156X
- On Accurate Stress Analysis of Composite and Sandwich Narrow Beams vol.8, pp.3, 2007, https://doi.org/10.1080/15502280701252834
- Mixed finite element for modelling interfaces vol.18, pp.2, 2009, https://doi.org/10.3166/ejcm.18.155-175
- Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate vol.46, pp.4, 2002, https://doi.org/10.1139/cjce-2018-0259
- Modelling and comparative study of viscoelastic laminated composite beam - an operator based finite element approach vol.25, pp.4, 2021, https://doi.org/10.1007/s11043-020-09469-7