DOI QR코드

DOI QR Code

A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties

  • Singh, B.N. (Department of Aerospace Engineering, Indian Institute of Technology) ;
  • Iyengar, N.G.R. (Department of Aerospace Engineering, Indian Institute of Technology) ;
  • Yadav, D. (Department of Aerospace Engineering, Indian Institute of Technology)
  • 발행 : 2002.01.25

초록

Composites exhibit larger dispersion in their material properties compared to conventional materials due to larger number of parameters associated with their manufacturing processes. A $C^0$ finite element method has been used for arriving at an eigenvalue problem using higher order shear deformation theory for initial buckling of laminated composite plates. The material properties have been modeled as basic random variables. A mean-centered first order perturbation technique has been used to find the probabilistic characteristics of the buckling loads with different edge conditions. Results have been compared with Monte Carlo simulation, and those available in literature.

키워드

참고문헌

  1. Cha, P.D., and Gu, W. (1999), "Comparing the perturbed eigensolutions of a generalized and a standard eigen value problem", J. Sound & Vibration, 227(5), 1122-32. https://doi.org/10.1006/jsvi.1999.2375
  2. Englested, S.P., and Reddy, J.N. (1994), "Probabilistic methods for the analysis of metal matrix composite", Composite Science &Technology, 50, 91-107. https://doi.org/10.1016/0266-3538(94)90129-5
  3. Franklin, J.N. (1968), Matrix Theory, Prentice-Hall, Englewood Cliff, N. J.
  4. Ghosh, A.K., and Dey, S.S. (1994), "Buckling of laminated plates-a simple finite element element based on higher order theory", Finite Element Analysis and Design, 15, 289-302. https://doi.org/10.1016/0168-874X(94)90023-X
  5. Hinton, E., and Owen, D.R.J. (1984), Finite Element Software for Plates and Shells, Prneridge Press, Swansea.
  6. Ibrahim, R.A. (1987), "Structural dynamics with parameter uncertainties", Appl. Mech. Rev., 40, 309-28. https://doi.org/10.1115/1.3149532
  7. Kareem, A., and Sun, W.J. (1990), "Dynamic response of structures with uncertain damping", Eng. Struct., 12, 1-8.
  8. Kleiber, M., and Hien, T.D. (1992),The Stochastic Finite Element Method, John Wiley & Sons.
  9. Leissa, A.W, and Martin, A.F. (1990), "Vibration and buckling of rectangular of composite plates with variable fiber spacing", Comp. Struct., 14,339-57. https://doi.org/10.1016/0263-8223(90)90014-6
  10. Lin, S.C., and Kam, T.Y (2000), "Probability failure analysis of transversely loaded composite plates using higher-order second moment method", J. Eng. Mech., ASCE, 126(8), 812-20. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(812)
  11. Lin, WK., Belystschko, T., and Main, A. (1986), "Random field finite elements", Int. J. Numer. Meth. in Eng., 23, 1831-45. https://doi.org/10.1002/nme.1620231004
  12. Manohar, C.S., and Ibrahim, R.A. (1999), "Progress in structural dynamics with stochastic parameter variations: 1987-1998", Applied Mechanics Review, 52, 177-96. https://doi.org/10.1115/1.3098933
  13. Mindlin, R.D. (1951), "Influence of rotary inertia and shear deformation on flexure motions of isotropic elastic plates", J. Appl. Mech., Transac., ASME, 18, 31-38.
  14. Moita, J.S., Mota Soares, C.M., and Mota Soares, C.A. (1996), "Buckling behavior of laminated composite structures using a descrete higher-order displacement model", Compos. Struct., 35, 75-92. https://doi.org/10.1016/0263-8223(96)00025-6
  15. Nakagiri, S., Tatabatake, H., and Tani, S. (1990), "Uncertain eigen value analysis of composite laminated plates by sfem", Compo. Struct., 14,9-12.
  16. Nigam, N. C. (1983), Introduction to Random Vibrations, MIT Press, Cambridge, MA.
  17. Noor, A.K. (1975), "Stability of multi-layered composite plates", Fibre Science & Technology, 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  18. Putcha, N.S., and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", J. Sound & Vibration, 104(8), 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
  19. Reddy, J.N. (1984), "A simple higher order shear theory for laminated composite plates", J. Appl. Mech., Transac. of the ASME, 51, 745-752. https://doi.org/10.1115/1.3167719
  20. Reddy, J.N., and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12),1808-17. https://doi.org/10.2514/3.10338
  21. Reissner, E. (1945), "The effects of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans, ASME, 12,69-77.
  22. Salim, S., Iyengar, N.G.R., and Yadav, D. (1998), "Buckling of laminated plates with random material characteristics", Appl. Compos. Mat., 5, 1-9. https://doi.org/10.1023/A:1008878912150
  23. Shankara, C.A., and Iyengar, N.G.R. (1996), "A $C^0$ element for the free vibration analysis of laminated composite plate", J. Sound & Vibration, 191(5), 721-38. https://doi.org/10.1006/jsvi.1996.0152
  24. Singh, B.N., Yadav, D., and Iyengar, N.G.R. (2001), "Initial buckling of composite cylindrical panels with random material properties", Compos. Struct., 53(1), 55-64. https://doi.org/10.1016/S0263-8223(00)00178-1
  25. Vanmarcke, E.H., and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beam", J. Eng. Mech., ASCE,109, 1203-14. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  26. Vinckenroy, G.V., and Wilde, W.P. de. (1995), "The use of Monte Carlo techniques in sfem for determination of the structural behavior of composites", Compos. Struct., 32, 247-53. https://doi.org/10.1016/0263-8223(95)00055-0
  27. Yadav, D., and Verma, N. (1997), "Buckling of composite circular cylindrical shells with random material properties", Compos. Struct., 37, 385-91. https://doi.org/10.1016/S0263-8223(97)00032-9

피인용 문헌

  1. Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties vol.27, pp.2, 2007, https://doi.org/10.12989/sem.2007.27.2.199
  2. Post buckling response of laminated composite plate on elastic foundation with random system properties vol.14, pp.1, 2009, https://doi.org/10.1016/j.cnsns.2007.08.005
  3. Effects of random system properties on the thermal buckling analysis of laminated composite plates vol.87, pp.17-18, 2009, https://doi.org/10.1016/j.compstruc.2009.06.004
  4. Buckling and Post-Buckling Response of Laminated Composite Plate with Random System Properties vol.21, pp.6, 2014, https://doi.org/10.1080/15376494.2012.699597
  5. Recent development in modeling and analysis of functionally graded materials and structures vol.79, 2015, https://doi.org/10.1016/j.paerosci.2015.07.001
  6. Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties vol.37, pp.5, 2013, https://doi.org/10.1016/j.apm.2012.06.013
  7. EFFECT OF RANDOM SYSTEM PROPERTIES ON INITIAL BUCKLING OF COMPOSITE PLATES RESTING ON ELASTIC FOUNDATION vol.08, pp.01, 2008, https://doi.org/10.1142/S0219455408002570
  8. Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration vol.87, pp.10, 2010, https://doi.org/10.1016/j.ijpvp.2010.07.013
  9. Hygrothermally induced buckling analysis of elastically supported laminated composite plates with random system properties vol.46, pp.21, 2012, https://doi.org/10.1177/0021998311431993
  10. FEM model for stochastic mechanical and thermal postbuckling response of functionally graded material plates applied to panels with circular and square holes having material randomness vol.62, pp.1, 2012, https://doi.org/10.1016/j.ijmecsci.2012.05.010
  11. Stochastic thermal buckling analysis of laminated plates using perturbation technique vol.139, 2016, https://doi.org/10.1016/j.compstruct.2015.11.076
  12. Hygrothermoelastic Buckling Response of Laminated Composite Plates with Random System Properties: Macromechanical and Micromechanical Model vol.28, pp.5, 2015, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000241
  13. A C° element for free vibration of composite plates with uncertain material properties vol.11, pp.4, 2002, https://doi.org/10.1163/156855102321669163
  14. EFFECT OF UNCERTAIN SYSTEM PROPERTIES ON THERMO-ELASTIC STABILITY OF LAMINATED COMPOSITE PLATES UNDER NONUNIFORM TEMPERATURE DISTRIBUTION vol.02, pp.02, 2010, https://doi.org/10.1142/S175882511000055X
  15. Effect of random system properties on bending response of thermo-mechanically loaded laminated composite plates vol.35, pp.12, 2011, https://doi.org/10.1016/j.apm.2011.05.014
  16. Second-order statistics of the elastic buckling of functionally graded rectangular plates vol.65, pp.7-8, 2005, https://doi.org/10.1016/j.compscitech.2004.11.012
  17. Free vibration of laminated composite conical shells with random material properties vol.81, pp.1, 2007, https://doi.org/10.1016/j.compstruct.2006.08.002
  18. Second-order statistics of natural frequencies of smart laminated composite plates with random material properties vol.4, pp.1, 2002, https://doi.org/10.12989/sss.2008.4.1.019
  19. Thermomechanical Elastic Post-Buckling of Functionally Graded Materials Plate with Random System Properties vol.14, pp.3, 2002, https://doi.org/10.1080/15502287.2012.711423