DOI QR코드

DOI QR Code

MRI에 의한 한국인 신체분절의 생체역학적 모수치 산출

Employing Magnetic Resonance Imaging(MRI) in the Estimation of the Biomechanical Body Segment Parameters of Korean Adults

  • 발행 : 2002.04.30

초록

The purpose of this study was to employing MRI in the estimation of the biomechanical body segment parameters of Korean adults. for this purpose MRI study on 19 Korean living subjects were used to measurement. All the parameters that was concerned were inertial characteristics of human body mass of each segment, center of mass of them and the length of radius of gyration of them. The cross sectional images and saggital images of every 1cm interval were got using the 0.5 Tesla MRI from the top of head to the bottom of foot, whole body. And then, by tracing the images of the film and scanning them, got the area which the several tissues occupied in the image of slice. By summing the area of slice of each segment which were calculating and by multipling the density of the tissues, got the mass of segment and other inertial characteristics. The ratios of radius of gyration in both transverse axis and longitudinal axis though the segmental mass and segment length are as follow: male A : head($0.229\pm0.0029$), neck($0.256\pm0.0095$), thorax($0.374\pm0.0059$) abdomen($0.245\pm0.0020$), pelvis($0.368\pm0.0106$), thigh($0.288\pm0.0030$) shank($0.280\pm0.0043$), foot($0.277\pm0.0195$), upperarm($0.311\pm0.0074$) forearm($0.286\pm0.0051$), hand($0.253\pm0.0095$) female A : head($0.214\pm0.0032$), neck($0.254\pm0.0112$), thorax($0.295\pm0.0061$) abdomen($0.289\pm0.0021$), pelvis($0.329\pm0.0108$), thigh($0.288\pm0.0036$) shank($0.280\pm0.0047$), foot($0.243\pm0.0206$), upperarm($0.279\pm0.0083$) forearm($0.286\pm0.0048$), hand($0.229\pm0.0097$) male B : head($0.532\pm0.0006$), neck($0.533\pm0.0006$), thorax($0.658\pm0.0008$) abdomen($1.350\pm0.0022$), pelvis($0.875\pm0.0002$), thigh($0.213\pm0.0001$) shank($0.160\pm0.0001$), foot($0.152\pm0.0002$), upperarm($0.136\pm0.0002$) forearm($0.202\pm0.0002$), hand($0.273\pm0.0006$) female B : head($0.198\pm0.0002$), neck($0.335\pm0.0011$), thorax($0.238\pm0.0001$) abdomen($0.888\pm0.0001$), pelvis($1.318\pm0.0117$), thigh($0.095\pm0.0001$) shank($0.075\pm0.0001$), foot($0.181\pm0.0006$), upperarm($0.0.062\pm0.0001$) forearm($0.083\pm0.0001$), hand($0.105\pm0.0007$).

키워드

참고문헌

  1. 김영일외 15인 (1996). 의료 영상 정보학. 대학서림. 9-33.
  2. 김용선 (1999). MRI방법에 의한 신체분절의 종축 관성모멘트 산출. 박사학위논문. 성균관대학교 대학원.
  3. 김원경 (1998). 사진계측법과 침수법에 의한 대학 구기운동선수의 생체역학적 인체분절 관성특성 비교. 한국운동역학회지. 8(3). 99-125.
  4. 김영일 (1995). 전신 자기 공명 영상. 고려의학. 9-45.
  5. 박우규 (1993). 영상처리를 이용한 인체 및 인체분절의 생체역학적 특성추정. 박사학위논문. 고려대학교대학원.
  6. 이충근 (1994). 한국 성인여자 신체분절의 관성적 특성. 박사학위논문. 성균관대학교 대학원.
  7. 연세대학교 의과대학 진단 방사선학교실 (1997). 진단방사선학, 고려의학.
  8. 정철정 (1993). 한국성인 남자 신체분절의 생체역학적 모수치 산출. 박사학위논문. 서울대학교 대학원.
  9. 주영화(2000). MRI에 의한 한국성인 여자 신체분절 종축 관성모멘트 산출. 박사학위논문. 성균관대학교 대학원.
  10. Ackland, T, R, Blanksby, B. A., & Bloomfield, J. (1998). Inertial charactristics of adolescent male body segment. Journal of Biomechnics, 21, 319-327. https://doi.org/10.1016/0021-9290(88)90261-8
  11. Bohndorkf, K, Reiser, M., Locher, B., Feausde Lacrois, W., Steinbrich W. (1986). Magnetic resonance imaging of primary tumors and tumor-like lesions of bone. Skeletal Radiol. 15, 511-517. https://doi.org/10.1007/BF00361046
  12. Braune, W., and Fischer, O. (1885). On the center of Gravity of the Human Body, Springer-Verlag, Berlin.
  13. Braune, W., and Fischer, O. (1888). Determination of the Moments of Intertial of the Human Body and Its Limbs,Springer-Verlag, Berlin.
  14. Braune, W., and Fischer, O. (1889). The center of gravity of the human body as related to the equipment of the german infantry.
  15. Clauser, C. E., McConville, J. T., Young, J. W. (1969). Weight, volume, and center of mass of segments of the human body. Aerospace Medical Research Laboratory, TR-69-70. Wright-Patterson Air Force Base, Ohio.
  16. Dempster, W. T. (1955). Space requirements of the seated operator. Wright Air Development Center TR-55-159, Wright-Patterson Air Force Base, Ohio.
  17. Fischer, O. (1906). Theoretical fundamentals for a mechanics of living bodies with special applications to man as well as to some processes of motion in machines. B. G. Teubner, Berlin. (ATI 153 688. Available from National Technical Information Services.)
  18. Hanavan, E. P. (1964). A Mathematical model of the human body. Aerospace Medical Research Laboratory TR-64-102, Wright-Patterson Air Force Base, Ohio.
  19. Jensen, R. K. (1978). Estimation of the Biomechanical properties of the three body types using photogrammetric method. Journal of Biomechanics 11, 349-358 https://doi.org/10.1016/0021-9290(78)90069-6
  20. Martin, P. E., Mungiole, M, Marzke, M. W., & Longhill, J. M. (1989). The use of magnetic resonance imaging for measuring segment inertial properties. Journal of Biomechanics, 22, 367-376. https://doi.org/10.1016/0021-9290(89)90051-1
  21. Matsui, H. (1958). A new method to determine the center of gravity of a human body somatometry. Tokyo: Taiiku no kagakusha.
  22. McConville, et al. (1980). Anthropometric Relationships of Body and Body Segment Moments of Inertial Wright-Patterson Air Force Base, Ohio.
  23. Winter, D. A. (1979). Biomechanics of human motion. New York: Jhon Wiley and Sons.
  24. Zatsiorsky, V., & Seluyanov, V. (1985). Estimation of mass and inertial characteristics of the human body by means of best predictive regression equations. In Winter, D., Norman, R., Wells, R., Hayes, K., & Patta, A. (Eds), Biomechanics IX-B, Champaign, IL: Human Kinetics.