Chemical Compositions in Rainwater at Hiroshima Prefecture, Japan

  • Kim, Do-Hoon (Medi-Chem Institute, KRD CO. LTD.) ;
  • Takeda, Kazuhiko (Faculty of Integrated of Arts and Sciences, Hiroshima University) ;
  • Sakugawa, Hiroshi (Faculty of Integrated of Arts and Sciences, Hiroshima University) ;
  • Lee, Jin-Sik (Department of Chemistry, Kyungsung University)
  • Received : 2002.02.06
  • Published : 2002.08.25

Abstract

From May 1999 to July 2000, concentration of 17 metals (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sr, V, Zn), 4 ions (${NH_4}^+$, $Cl^-$, ${NO_3}^-$, ${SO_4}^{2-}$) and pH in rainwater were investigated. The volume-weighted mean concentrations (VWM) of ${NO_3}^-$ and ${SO_4}^{2-}$ were 16.0 and $17.0{\mu}mol\;L^{-1}$. The average pH was 4.53, which ranged from 3.83 to 6.06. The characteristic variations of these species were investigated in terms of the source of these species by principal component analysis (PCA) and interelement correlation coefficients. The elements were classified into three categories: anthropogenic source (Cd, Cu, Fe, Ni, Pb, V, Zn, ${NH_4}^+$, ${NO_3}^-$, ${SO_4}^{2-}$ and $H^+$), soil and crust dust (Al, Ba, Ca, Fe, Mn) and sea salts (Mg, Na, $Cl^-$). In addition, we compared the concentrations in rainwater, which were taken on the same day in three sites (Higashi-Hiroshima, an urban-facing area and a mountain-facing area of Mt. Gokurakuji) in order to examine the regional effect against the concentrations in them. At the urban-facing area of Mt. Gokurakuji, the concentrations of chemical compositions were higher than other areas.

Keywords

References

  1. B. C. Faust and J. M. Allen, Atmosph. Environ., 28, 745 (1994).
  2. Y. Zuo and J. Hoigne, Environ. Sci. Technol., 26, 1014 (1992).
  3. L. R. Martin, M. W. Hill, A. F. Tai and T. W. Good, J. Geophys. Res., 96, 3085 (1991).
  4. D. L. Sedlek, J. Hoigne, M. M. David, R. N. Colvile, W. Wiepercht, J. A. Lind and S. Fuzzi, Atmosph. Environ., 31, 2515 (1997).
  5. M. J. Behrenfeld, A. J. Bale, Z. S. Kober, J. Aiken and P. G. Falkowaski, Nature, 383, 508 (1996).
  6. J. N. Galloway, S. A. Thornton, H. L. Volchok and R. A. N. McLean, Atmosph. Environ., 16, 1677 (1982).
  7. B. K. Lee, S. H. Hong and D. S. Lee, Atmosph. Environ., 34, 563 (2000).
  8. S. I. Fujita, A. Takahashi, J. H. Weng, L. F Huang, H. K. Kim, C. K. Li, F. T. C. Huang and F. T. Jeng, Atmosph. Environ., 34, 525 (2000).
  9. K. Takeda, K. Marumoto, T. Minamikawa, H. Sakugawa and K. Fujiwara, Atmosph. Environ., 34, 4525 (2000)
  10. D. H. Kim, M. Chiwa, K. Takeda and H. Sakugawa, Oxidants/Acidic species and forest decline in East Asia, Japan Science and Technology Corporation, 216 (1999)
  11. D. H. Kim, K. Takeda, H. Sakugawa and J. S .Lee, Anal. Sci. & Tech, 14(6), 510 (2001).
  12. 佐竹硏一, 酸性雨硏究環境試料分析, 39, 愛智出版, Japan, 2000.
  13. H. A. Khwaja and L. Husian, Atmosph. Environ., 24A, 1869 (1990).
  14. T. Miyake, K. Takeda, K. Fujiwara and H. Sakugawa, 日本化學會誌, 357 (2000).
  15. H. Hoffmann, P. Hoffmann and K. H. Lieser, Fresenius J. Anal. Chem., 340, 591 (1991).