Study on elemental analysis of metal and ceramic samples by using laser ablation ion trap mass spectrometry(LAITMS)

레이저 이온화 이온트랩 질량분석법을 이용한 금속 및 세라믹 시료의 원소분석에 관한 연구

  • 송규석 (한국원자력연구소, 양자광학팀) ;
  • 박현국 ((주)옵트론-텍 부설 광전자 연구소) ;
  • 차형기 (한국원자력연구소, 양자광학팀) ;
  • 이상천 (경남대학교, 정밀화학공학부)
  • Received : 2001.09.11
  • Published : 2002.02.25

Abstract

Laser ablation ion trap mass spectrometry (LAITMS) was developed for the analysis of metal and ceramic samples. For this study, XeCl excimer laser (308 nm) was used for ablating the samples and ITMS was used as a detector. Samples were introduced from outside of a ring electrode and this way of sample introduction was very effective for solid samples when laser ablation was employed. Helium gas was used as a buffer gas, and its effect on sensitivity and some parameters (buffer gas pressure, ion storage time, and cut-off RF voltage) were studied. The optimized conditions were $1{\times}10^{-4}$ Torr of buffer gas pressure, 100 ms of ion storage time and $1150V_{p-p}$ of cut-off RF voltage. From that results, copper (Cu) and molybdenum (Mo) metals were tested with LAITMS and the mass spectra of these pure metals were compared with the natural abundance of isotope ratio. We also examined ceramic samples ($Al_2O_3$, $ZrO_2$) and represented the result of elemental analysis.

본 연구에서는 레이저 애블레이션 이온 트랩 질량분석법을 이용하여 금속 및 세라믹 시료들에 대한 원소분석을 수행하였고, 이때 이온화 장치로는 XeCI 엑시머 레이저를 사용하였고 검출장치로서 이온트랩 질량 분석기를 사용하였다. 시료는 트랩의 바깥에 장착하여 시료의 교환이 매우 쉽도록 하였고 고체시료의 분석에 있어서 매우 효과적임을 밝혔다. 헬륨기체의 압력이나 이온저장시간, 초기질량제한 RF 전압 등에 대한 기초 실험을 통하여 실험의 최적 조건을 구하였고 (헬륨 기체압력 $1{\times}10^{-4}$ Torr 이온 저장시간 100 ms 초기 질량 제한전압 $1150V_{p-p}$), 이 결과를 토대로 금속시료(구리, 몰리브데늄)와 세라믹 시료(알루미나 세라믹, 지르코니아 세라믹) 들에 대한 원소분석을 수행하였다.

Keywords

References

  1. U. S. Patent 2,939,952
  2. Analytical Chemistry v.68 no.3 Pulsed Gas Introduction for Increasing Peptide CID Efficiency in a MALDI/Quadrupole Ion Trap Mass Spectrometer V. M. Doroshenko;R. J. Cotter https://doi.org/10.1021/ac950954l
  3. Analytical Chemistry v.71 no.8 An Integrated Microfabricated Device for Dual Microdialysis and On-Line ESI-Ion Trap Mass Spectrometry for Analysis of Complex Biological Samples F. Xiang;Y. Lin;J. Wen;D. W. Matson;R. D. Smith https://doi.org/10.1021/ac981400w
  4. Analytical Chemistry v.70 no.14 Stereochemical Differentiation of Mannose, Glucose, Galactose, and Talose Using Zinc(II) Diethylenetriamine and ESI-Ion Trap Mass Spectrometry S. P. Gaucher;J. A. Leary https://doi.org/10.1021/ac980023k
  5. Rapid Communications in Mass Spectrometry v.10 no.9 Direct Sampling and Analysis of Volatile Organic Compounds in Air by Membrane Introduction and Glow Discharge Ion Trap Mass Spectrometry with Filtered Noise Fields S. M. Gordon;P. J. Callahan;D. V. Kenny https://doi.org/10.1002/(SICI)1097-0231(19960715)10:9<1038::AID-RCM623>3.0.CO;2-Y
  6. Rapid Communications in Mass Spectrometry v.10 no.3 S. A. McLuckey;D. E. Goeringer;K. G. Asano;G. Vaidyanathan;J. L. Stephenson, Jr. https://doi.org/10.1002/(SICI)1097-0231(199602)10:3<287::AID-RCM429>3.0.CO;2-H
  7. Rapid Communications in Mass Spectrometry v.11 no.6 Laser Ablation Ion Trap Mass Spectrometry—Storage Field Suppression and its Effect Upon Analytical Performance C. G. Gill;A. W. Garrett;N. S. Nogar;P. H. Hemberger https://doi.org/10.1002/(SICI)1097-0231(199704)11:6<551::AID-RCM914>3.0.CO;2-F
  8. Spectrochim. Acta. v.50B A. W. Garrett;P. H. Hemberger;N. S. Nogar
  9. Spectrochim. Acta. v.50B A. W. Garrett;P. H. Hemberger;N. S. Nogar
  10. Journal of Radioanalytical and Nuclear Chemistry v.241 no.3 Identification of 137Cs in an individual microparticle by laser desorption/ionization ion trap mass spectrometer K. H. Hong;K. Song;H. Cha;M. Yang;J. Lee;C. W. Lee;G. H. Lee https://doi.org/10.1007/BF02347209
  11. J. Kor. Phys. Soc. v.35 K. Song;K. H. Hong;M. Yang;H. Cha;J. Lee;G. H. Lee
  12. Microchem. J. v.63 no.9 K. H. Hong;K. Song;H. Cha;M. Yang;J. Lee;G. H. Lee
  13. Microchemical Journal v.68 no.2-3 K. Song;H. Cha;J. Lee;G. H. Park;S. C. Lee https://doi.org/10.1016/S0026-265X(00)00152-1
  14. Microchem. J. K. Song;H. Cha;J. Lee;G. H. Park;S. C. Lee
  15. Analytical Chemistry v.66 no.13 Ion trap mass spectrometry of externally generated ions S. A. McLuckey;G. J. V. Berkel;D. E. Goeringer;G. L. Glish https://doi.org/10.1021/ac00085a001
  16. Practical Aspects of Ion Trap Mass Spectrometry v.Ⅱ R. E. March;J. F. J. Todd
  17. Anal. Chem. v.64 A. McIntosh;T. Donovan;J. Brodbelt
  18. JAAS v.8 C. G. Gill;M. W. Blades
  19. Physical Review A v.26 no.4 R. Fabbro;E. Fabre;F. Amiranoff;C. Gardan-Labaune https://doi.org/10.1103/PhysRevA.26.2289
  20. TrAC Trends in Analytical Chemistry v.7 no.4 Laser ablation and the laser microprobe S. J. Hein;E. H. Piepmeier https://doi.org/10.1016/0165-9936(88)87011-0