한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽 (Optic lobe)의 미세구조

Fine Structure of Optic Lobes of Cephalopods (Todarodes pacificus and Octopus minor) inhabiting the Korean Waters

  • 한종민 (목원대학교 자연과학대학 생명과학부) ;
  • 장남섭 (목원대학교 자연과학대학 생명과학부)
  • Han, Jong-Min (Department of Life Science, College of Natural Science, Mokwon University) ;
  • Chang, Nam-Sub (Department of Life Science, College of Natural Science, Mokwon University)
  • 발행 : 2002.06.01

초록

살오징어와 서해낙지의 시엽은 피질부와 수질부로 크게 나눌 수 있었고, 피질부는 3층(외과립세포층, 망상층, 그리고 내과립세포층)으로 구성되어 있었다. 피질부의 두께는 오징어에서 약 $420{\sim}450{\mu}m$ (외과립층, $100{\mu}m$; 망상층, $170{\sim}200{\mu}m$ 그리고 내과립층, $150{\mu}m$) 정도였고 낙지인 경우는 약 $250{\sim}290{\mu}m$ (외과립세포층, $50{\sim}70{\mu}m$; 망상층, $100{\sim}120{\mu}m$; 내과립세포층, $100{\mu}m$) 정도로 관찰되어 오징어가 낙지에 비해 $170{\mu}m$ 정도 더 두터웠다. 살오징어의 외과립세포층에서는 3종류의 신경세포(A형, B형 그리고 C형)와 이들을 감싸거나 인접되어 있는 신경교세포들이 관찰되었고, 서해낙지에서는 2종류의 신경세포(A형과 B형)와 1종류의 신경교세포가 관찰되었다. 망상층에는 전연접자루와 신경말단들이 서로 연접되어 다양한 형태의 연접체를 형성하였는데, 살오징어에서는 전자밀도가 높은 소포, 과립소포, 그리고 투명소포 등이 혼재되어 있거나 한 종류만을 포함하는 경우 등 다양한 반면, 서해낙지에서는 투명소포만을 소지한 경우와 과립소포만을 소지한 경우, 그리고 투명소포와 과립소포들이 혼합된 경우 등 3종류의 연접체가 주로 관찰되었다. 내과립세포층은 구조적으로 두 종에서 거의 비슷한 형태이며 2종류의 신경세포(A형과 B형)와 1종류의 신경교세포로 구성되어 있었다. 살오징어의 수질부에서는 크기가 $7{\times}5{\mu}m$ 정도인 세포들이 일렬로 배열되어 있어 울타리세포층을 형성하였으나 서해낙지에서는 이들이 관찰되지 않았다.

Optic lobes of Todarodes pacificus and Octopus minor are largely divided into cortex and medulla, the cortex being composed of three layers (an outer granule cell layer, a plexiform layer, and an inner granule cell layer). The cortex of Todarodes pacificus is about $420{\sim}450{\mu}m$ thick, being $170{\sim}200{\mu}m$ thicker than that of Octopus minor of which thickness is about $250{\sim}290{\mu}m$. In the outer granule cell layer of Todarodes pacificus, three types of nerve cells (type-A, type-B and type-C) and neuroglial cells that surround or contact with the neurons are observed, while in the outer granule cell layer of Octopus minor, two types of nerve cells (type-A and type-B) and a single type of neuroglial cells are observed. In a plexiform layer, a presynaptic bag and nerve endings are connected to each other, consequently forming various types of synaptosomes. The synaptosomes of Todarodes pacificus contain electron dense vesicles, electron dense-core vesicles and electron lucent vesicles, either individually or in a mixture. On the other hand, three types of synaptosomes a mixture of electron dense-core vesicles and electron lucent vesicles, electron lucent vesicles only, and electron dense-core vesicles only are observed in Octopus minor. The structures of the inner granule cell layer are almost similar in the two species. It is composed of two types of nerve cells (type-A, type-B) and a single type of neuroglial cells. In the medulla of Todarodes pacificus, the cells of $7{\times}5{\mu}m$ are arranged to a line and form the palisade cell layer, but these are not observed in Octopus minor.

키워드

참고문헌

  1. Boycott BB: Functional organization of the brain of the cuttlefish, Sepia officinalis. Proc R Soc Ser 153:503-534, 1961 https://doi.org/10.1098/rspb.1961.0015
  2. Budelmann BU, Young JZ. The oculomotor system of decapod cephalopods: Eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Philos Trans R Soc Lond Biol 340:93-125, 1993 https://doi.org/10.1098/rstb.1993.0051
  3. Cajal SR: Contribución al conocimiento de la retina by centros ópticos de los cephalópodos. Trab Lab Inc Biol(Univ Madrid) 15:1-82, 1917
  4. Chichery MP, Chichery R: Histochemical study of the localization of cholinesterases in the central nervous system of Sepia officinalis. Cell Tiss Res, 148:551-560, 1974
  5. Cornwell CJ, Messenger JB, Williamson R: Distribution of GABA-like immunoreactivity in the octopus brain. Brain Res 621:353-357, 1993 https://doi.org/10.1016/0006-8993(93)90127-9
  6. Dilly PN, Gray EG, Young JZ: Electron microscopy of optic nervous and optic lobes of Octopus and Eledone. Proc R Soc Lond Biol 158:446-456, 1963 https://doi.org/10.1098/rspb.1963.0057
  7. Gray EG, Young JZ: Electron microscopy of optic nerves and optic lobes of Octopus and Eledone. J Cell Biol 21:87-103, 1964 https://doi.org/10.1083/jcb.21.1.87
  8. Grillo MA, Palay SL: Granule-containing vesicles in the autonomic nervous system. In: Breese SS, ed. Electron microscopy. Vol. 2. p.U.1. Academic press, New York, 1962
  9. Haghighat N, Cohen RS, Pappas GD: Fine structure of squid (Loligo pealei) optic lobe synapses. Neuroscience 13:527-546, 1984 https://doi.org/10.1016/0306-4522(84)90246-X
  10. Hama K: Some observations of the fine structure of the giant synapse in the stellate ganglion of the squid Doryteuthis bleekeri. Z Zellforsch 56:437-444, 1962 https://doi.org/10.1007/BF00335624
  11. Han JM, Chang NS: Fine structure of retinae of cephalopods(Todarodes pacificus and Octopus minor) inhabiting the Korean waters I. Korean J Electron Microscopy 32:17-30, 2002. (Korean)
  12. Hobbs MJ, Young YJ: A cephalopod cerebelum. Brain Res 55:424-430, 1973 https://doi.org/10.1016/0006-8993(73)90307-7
  13. Saidel WM: Connections of the octopus lobe: An HRP study. J Comp Neurol 206:346-358, 1982 https://doi.org/10.1002/cne.902060403
  14. Uemura T, Yamashita T, Haga C, Miyazaki N, Kondo H, Matsushita M: Localization of serotonin-immunoreactivity in the central nervous system of Octopus vulgaris by immunohistochemistry. Brain research 406:73-86. 1987 https://doi.org/10.1016/0006-8993(87)90770-0
  15. Wolfe DE, Axelrod J, Potter LT, Richardson KC: Localization of norepinephrine in adrenergic axons by light- and electron-microscopic autoradiography. In: Breese SS, ed. Electron microscopy. Vol. 2. p.L.12. Academic press. New York, 1962
  16. Woodhams PL: The ultrastructure of a cerebellar analogue in Octopus. J Comp Neurol 174:329-346, 1977 https://doi.org/10.1002/cne.901740209
  17. Yamashita T, Haga C, Hirai K, Uemura T, Kondo H, Kosaka K: Localization of serotonin immunoreactivity in cephalopod visual system. Brain Research 521:81-88, 1990 https://doi.org/10.1016/0006-8993(90)91527-N
  18. Young JZ: The optic lobes of Octopus vulgaris. Phil Trans Roy Soc B 245: 19-58, 1962 https://doi.org/10.1098/rstb.1962.0005
  19. Young JZ: The central nervous system of Nautilus. Philos Trans R Soc Lond Biol 249:1-25, 1965 https://doi.org/10.1098/rstb.1965.0006
  20. Young JZ: The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford, 1971
  21. Young JZ: The organization of a cephalopod ganglion. Philos Trans R Soc Lond Biol 263:409-429, 1972 https://doi.org/10.1098/rstb.1972.0005
  22. Young, JZ: The central nervous system of Loligo. I. The optic lobe. Philos Trans R Soc Lond Biol 267:263-302, 1974 https://doi.org/10.1098/rstb.1974.0002
  23. Young JZ: The nervous system of Loligo. V. The vertical lobe complex. Philos Trans R Soc Lond Biol 285:311-354, 1979 https://doi.org/10.1098/rstb.1979.0008
  24. Young JZ: The nervous system of Loligo, V, The vertical lobe complex, Philos Trans R Soc Lond BioI 285: 311 354, 1979 https://doi.org/10.1098/rstb.1979.0008
  25. Young JZ: Evolution of the cephalopod brain, In: Clarke MR, Trueman ER ed, The Mollusca, Vol. 12, Paleontology and Neontology, pp, 215 228, Academic press, San Diego, 1988