조류를 이용한 인공하수의 재처리

Retreatment of Arificial Wastewater by using Microalgae

  • 발행 : 2002.06.29

초록

본 연구는 실험실규모의 산화지 공법을 적용하였다. 체류시간 변화 및 산화지 형태가 처리율에 미치는 영향을 조사하였다. 조류의 광합성에 대한 유기물 제거율과 용존산소와의 상관관계는 야간에 비해 주간의 상관성이 더 높은 것으로 나타났고, 단일지의 경우는 체류시간 15일의 경우가 5일에 비해 상관성이 더 높은 것으로 조사되었다. 시간대별 DO변화는 체류시간 5일의 경우 다단산화지 내의 DO농포는 $42{\sim}19.8\;mg/l$를 나타내었고, 첫번째 조에 비해 후단으로 갈수록 높아졌다. 유기물 처리효율은 체류시간 5일이고, 4단 직렬식 다단 산화지 시설에서 제거효율이 더 높았다. 유기물 제거효율로 $TBOD_5$ 평균 제거율은 $49{\sim}83%$를 나타내었고, $SBOD_5$의 경우는 $87{\sim}92%$의 높은 처리율을 나타내었다. 또한 산화지내 조류생성량을 일정 농도로 유지시켜 주는 것이 산화지 공법의 처리율을 높일 수 있는 것으로 나타났다.

This study was performed in lab scaled oxidation pond. The removal efficiency of pollutant on the influence of changes of hydraulic retention time and pond style was investigated. The correlation between organic removal efficiency and dissolved oxygen concentration on algal photosynthesis showed the light time revealed a higher relationship more than the dark time, and the squares of the correlation coefficient of 15 days retention time were higher than that of 5 days in single pond. The variation of dissolved oxygen concentration of a series pond was from 4.2 to 19.8 mg/l under 5 days retention time, the concentration of dissolved oxygen increased with increasing step of series pond. Between the single pond and a series of pond system, a series of pond system showed better organic removal efficiency. Average removal efficiency range of $TBOD_5$ and $SBOD_5$ was $49{\sim}83%$ and $87{\sim}92%$, respectively. Algae should be removed appropriately to increase the removal efficiency of organic matter.

키워드

참고문헌

  1. 건설부. 1992. 하수도시설기준
  2. 조홍제, 김정식, 문성준, 박재희. 2000. 하수 차집율에 따른 도시 하천의 수질변화예측. 대한상하수도학회지. 14: 181-195
  3. 홍사욱, 이종우. 1981. 한강 중류수계 및 중요지천의 이화학적 조사 연구. 한국육수학회지 14: 1-11
  4. 환경부. 1995. 수질오염공정시험방법
  5. Al-Khateeb, B.M.A. 1992. The effect of physical configuration on the performance of laboratory-scale oxidation ponds. Water Research. 26: 1507-1513
  6. APHA, AWWA, WPCF. 1992. Standard method, 18th edition
  7. Brown, R.L. 1975. The occurrence and removal of nitrogen in subsurface agri cultural drainage from san joa valley, California. Water Research. 9: 524
  8. Fogg, G.E. 1942. Studies in nitrogen fixation by blue-green algae. Expl. Biology.19: 78
  9. Gloyna, E.F. 1967. Waste stabilization ponds. Lecture series. University of Texas, Austin. Texas
  10. Hintz, H.F. 1966. Nutritive value of algae grown on sewage. Animal Science. 25: 675
  11. Llorents, M., J. Saez, and A. Soler, 1992. Influence of thermal stratification on the behavior of a deep wastewater stabilization pond. J. Water Research. 26: 569-577
  12. Maiti, S.K. and S.K. Gupta, 1988. Nutrients removal and conservation byactivated algae in oxidation ditch. J. WPCF. 60: 2115-2119
  13. Morais, G.V.R. 1966. New factors in the design, operation and performance ofwaste stabilization ponds. Bull. Wild Health Organization. 34: 737-763
  14. Oswald, W.J. 1973. Complete waste treatment in ponds. Progress in WaterTechnology. Water Quality and Pollution Control. 3: 153
  15. Ryther, John H. 1959. Potential productivity of the sea. Science. 130: 65-69
  16. Silva, S.A. 1982. On the treatment of domestic sewage in waste stabilizationponds in Northeast Brazil. Ph. D. thesis. University of Dundee. Scotland
  17. Sladecek, Vladamir. 1961. Zur biologischen gliederung der hoheren saprobitatsstufen. Arch. f. Hydrbiol. Bd. 58: 103-121
  18. Stewart, W.D.P. 1968. Nitrogen input into aquatic eco-systems. Algae, Manand the Environment. Daniel F. Jackson
  19. Uziel, M. 1975. Integrated algal bacterial systems for fixation and conversion of solar energy. Presented before the annual meeting A.A.A.S. Symposium
  20. Waslein, C.I. 1975. Unusual sources of proteins for man. Critical Reviews in Food Science and Nutrition. 6: 77-151