Abstract
Quarternary $Li_2O-B_2O_3-Al_2O_3-SiO_2$ glasses were fabricated by the function of $R({\equiv}Li_2Omole%/B_2O_3mole%)$ and $K({\equiv}(Al_2O_3mole%+SiO_2mole%/B_2O_3mole%)$. The structures of these glasses were investigated through refractive index and Vicker's hardness. The refractive index increased as the increase of the polarizability in the glass network. In the region of low $Li_2O$ content, the refractive index increased due to the increase of the polarizability in the glass network but, in the region of high $Li_2O$ content, the rate of increase of the refractive index decreased due to the increase of the molar volume caused by the formation of $BO_3{^-}$ units with relatively high molar volume. And, the refractive index decreased as the increase of $Al_2O_3+SiO_2$ content with the molar volume in the glass network. The increase and decrease of vicker's hardness values for those glasses depended on the fraction of tetrahedral $BO_4$ units and it of triangle $BO_3{^-}$ units with non-bridging oxygen, respectively.
4성분 $Li_2O-B_2O_3-Al_2O_3-SiO_2$ 유리들을 $R({\equiv}Li_2Omole%/B_2O_3mole%)$과 $K({\equiv}(Al_2O_3mole%+SiO_2mole%/B_2O_3mole%)$에 의해 제작하여 유리들의 구조를 굴절률 (refractive index)과 Vicker's 경도(hardness)의 변화를 측정하여 분석하였다. 먼저, 굴절률의 증가는 유리 내부구조의 분극률을 증가시키는 $Li^+$ 양이온 수의 증가에 우선적으로 의존하여 증가하였으며, 적은 양의 리튬 산화물($Li_2O$)이 첨가된 영역에서는 굴절률은 리튬 이온 양에 의존하며, 많은 양의 리튬 산화물이 첨가된 영역에서는 큰 몰 부피를 갖고 하나의 비가교 산소를 갖는 $BO_3{^-}$ 단위들의 형성으로 유리 구조 내의 몰 부피 증가로 유리들의 굴절률의 증가가 둔화되었다. 그리고 알루미늄 산화물($Al_2O_3$)과 규소 산화물($SiO_2$)의 증가에 따라 굴절률의 감소는 $Al_2O_3$와 $SiO_2$에 의해 형성되어진 $AlO_4$ 단위들과 $SiO_4{^-}$ 단위들이 붕소 산화물($B_2O_3$)에 의해 형성되어진 $BO_4$단위들보다 몰 부피의 증가로 감소되어졌다. 또한, 경도의 증가는 유리 망목구조에 형성되어지는 $BO_4$ 단위 수에 의존하였으며, 경도의 감소는 유리 망목구조를 개방화시키는 $BO_3{^-}$ 단위 수에 의존하여 감소함을 알 수 있었다.