DOI QR코드

DOI QR Code

Population Dynamics and the Toxin of Anabaena in the Lower Naktong River

洛東江 下流城 濫藻 Anabaena의 個體群 變動 및 毒性 硏究

  • Choi, Ae-Ran (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Jin-Hong (School of Environmental Science and Engineering, Inje University) ;
  • Lee, Jin-Ae (School of Environmental Science and Engineering, Inje University)
  • Published : 2002.06.30

Abstract

Population dynamics of Anabaena and the anatoxin-a concentration were monitored with physicochemical parameters at 3 sites in the lower Naktong River from May to September in 2000. Total 4 species of Anabaena (A. flosaquae, A. smithii, A. ucrainica and A. mucosa) were identified with morphological characterisitcs. Anabaena flos-aquae was most abundant among the populations. The standing crop of Anabaena ranged from 10 to 11,220 cells · $ml^{-1}$ and biomass of Anabaena more 1,000 cells · $ml^{-1}$ was obseved once at St. Mulgeum and St. Seonam, twice at St. Hagueon out of total 9 samplings. There were not significant correlations between the standing crop of Anabaena and other physicochemical parameters such as temperature, nitrate, total nitrogen, phosphate, total phophorus and N/P ratios. The frequency of trichomes with akinetes was low and ranged from 0 to 4% in the total Anabaena population and A. smithii showed highest frequency of 2.8% among all species. The population at St. Seonam showed highest frequency of 1.4% among all sampling sties. The population in September showed the highest frequency of 3.0% among all sampling period. The frequency of trichomes with heterocysts was low and ranged from 1 to 87% inthe total Anabaena population and A. smithii showed highest frequency of 55.1% among all species. The population at St. Mulgeum showed highest frequency of 17.6% among all sampling sites. The population in August showed the highest frequency of 21.4% among all sampling period. The frequency of trichomes with akinetes and/or heterocysts was not related to all the physicochemical parameters of temperature, nitrate, total nitrogen, phosphate, total phosphorus and N/P ratios. The anatoxin-a concentations were determined in algal materials dominated by Microcystis and Anabaena from June though August by derivatization using 7-fluoro-4-nitro-2, 1,3-benzoxadiazole (NBD-F) and HPLC analysis with fluorimetric detection. All the concentrations were below the detection limit of 0.1 ㎍ · $l^{-1}$ in the present study.

Keywords

References

  1. 김범철, 김재옥, 전만식, 황순진. 1999. 소양호 동. 식물플랑크톤의 계절변동. 한국육수학회지 32: 127-134.
  2. 김용재, 이정호. 낙동간 수계에 6개 댐호의 식물플랑크통군집구조 비교. 1996. 한국육수학회지 29: 347-362.
  3. 이은주, 김범철, 조규송. 1998. 소양호 지류(상걸리)에서의 식물 플랑크톤 군집국조(1982-1997). 한국육수학회지 31:119-128.
  4. 정 준. 1993. 한국담수조류도감. 도서출판 아카데미 서적. 469 pp.
  5. 환경부. 2000. 낙동강 수계에서의 남조류동석 연구 및 그 제거방안. 489pp.
  6. AI-Homaidan A.A and Arif I.A. 1998. Ecology and bloom-forming algae of a semipermanent rain-fed pool at Al-kharj, Saudi Arabia. J. Arid Environ. 38: 15-25. https://doi.org/10.1006/jare.1997.0319
  7. APHA, AWWA, WEF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, D.C.
  8. Baker P.D. and Humpage A.R. 1994. Toxicity associated with commonly ossurring cyanobacteria in surface waters of the marray-Darling Sasin, Australia. Aust. J. Mar. Freshwater Res.45: 773-786. https://doi.org/10.1071/MF9940773
  9. Bormans M. and Condie S.A 1998. Modelling the distibution of Anabaena and Melosira in a stratified rever weir pool. Hydrobiologia 364: 3-13. https://doi.org/10.1023/A:1003103706305
  10. Carmichael W.W. 1993. Diseade related to freshwater blue-green algae toxin and control measures. In: Falconer I.R.(ed.), Algal Toxins in Seafood and Drinking Water. Academic Press, Cambridge. pp. 187-209.
  11. Codd G.A 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Engineer. 16: 51-60.
  12. De Nobel W.T. (Pim), Huisman J., Snoep J.L. and Mur L.R. 1997. Competition for phosphorus between the nitrogen-fixing cyanbateria Anabaena and Aphanizomenon. FEMS Microbiol. Ecol. 24: 259-267. https://doi.org/10.1016/S0168-6496(97)00067-6
  13. De Nobel W.T. (Pim), Comparison of light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytol. 138: 579-587. https://doi.org/10.1046/j.1469-8137.1998.00155.x
  14. Dok W. and Hart B.T. 1996. Akinete differentiation in Anabaena circinalis (Cyanophyta). J. Phycol. 32: 557-565. https://doi.org/10.1111/j.0022-3646.1996.00557.x
  15. Fay P., Lynn J.A. and Majer S.C. 1984. Akinete development in the planktonic blue-green alga Anabaena circinalis. Br. Phycol. J. 19: 163-173. https://doi.org/10.1080/00071618400650171
  16. Herdman M. 1987. Aikinetes:structure and function. In: Fay P.and Van Baalen C. (eds), The Cyanobacteria. Elsevier Science Publicjers B. V., Amsterdam, New York, Oxford. pp. 227250.
  17. Hiroki M., Shimizu A, Li R., Watanabe M. and Watanabe M.M.1998. Development of a database system useful for identific-cation of Anabaena spp.(Cyanobacteria). Phycol. Res. 46: 85-93.
  18. Hetzel G. and Croome R. 1994. Long-term phytoplankton mon-itoring of the Darling River at Burtundy, New South Wales : incidence and significance of cyaobaverial blooms. Aust. J. Mar. Freshwater Res.45: 747-759. https://doi.org/10.1071/MF9940747
  19. James K.J. and Sherlock I.R. 1996. Determination of cyanobacte-rial neurotoxin, anatoxin-a, by derivatistion using 1-fluoro-4-nitri-2,1,3,-benzoxadiazole (NBD-F) and HPLC analysis with fluorimentric detection. Biomed. Chromatogr. 10: 46-47. https://doi.org/10.1002/(SICI)1099-0801(199601)10:1<46::AID-BMC551>3.0.CO;2-7
  20. James K.J., Sherlock I.R. and Stack M.A 1997. Anatoxin-a in Irish freshwater and cyanobaceria, determied using a new fluorimetiroc liquid chromatographic method. Toxicon 35: 963-971. https://doi.org/10.1016/S0041-0101(96)00201-2
  21. Krishnamyrthy T., Szafraniec L., Hunt D.F., Shabanowitz J., Yates J.R., Hauer C.R., Carmichael W.W., Skulberg O., Codd G.A and Missler S. 1989. Structural characterization of toxic cyclic preptides form blue-green algae by tandem mass spectrometry. Proc. Nat. Acad. Sci. USA 86: 770-774. https://doi.org/10.1073/pnas.86.3.770
  22. Li R., Watanabe M. and Watanabe M.M. 1997. Akinete forma-tion in planktonic Anabaena spp. (cyanobacteria) by treat-ment with low temperature. J. phycol. 33: 576-584. https://doi.org/10.1111/j.0022-3646.1997.00576.x
  23. Liengen T. 1999. Environmental factors influencing the nitrogen fixation activity of tree-living terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can. J. Microbiol. 45: 573581. https://doi.org/10.1139/cjm-45-7-573
  24. Maier H.R. and Dandy G.C. 1997. Modelling cyaobacteria (blue-green algae) in the River Murray using artifial neural networks. Math. Comput. Simul. 43: 377-386. https://doi.org/10.1016/S0378-4754(97)00022-0
  25. Matsunaga S., Moore R.E., Niemczura W.P. and Carmichael W.W. 1989. Anatoxi-a(s), a potent anticholinesterase from Anbaena Flos-aquae. J. Amer. Chem. Soc. 111: 8021-8023. https://doi.org/10.1021/ja00202a057
  26. Meeks J.C. 1998. Symbiosis between nitrogen-fixing cyanobac-teria and plants. BioScience 48: 266-276. https://doi.org/10.2307/1313353
  27. Mur L.R. and Schreurs H. 1995. Light as a selective factor in the distribution of phytoplankton species. Wat. Sci. Technol. 32: 25-34.
  28. Namikoshi M. and Rinehart K.L. 1996. Bioactive compounds produced by cyanobacteria. J. Indus. Microbiol. 17: 373-384. https://doi.org/10.1007/BF01574768
  29. Paerl H.W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarin and marine environ-ments. Phycologia 35 (Suppl.): 25-35. https://doi.org/10.2216/i0031-8884-35-6S-25.1
  30. Park H.-D., Kim B., Kim E. and Okino T. 1998. Hepatotoxic microcystins and neurotoxic anatoxic-a in cyanobaterial blooms from Korean Lakes. Environ. Toxicol. Water Qual. 13: 225-234.
  31. Park H.-D., Watanabe M.F., Harada K.-I., Nagai H., Suzuki M., Watanabe M. and Hayashi H. 1993. Hepatotoxin (micro-cystin) and neurotoxin (anatoxin-a) contained in natural blooms and stranis of cyanobateria from Japanese fresh-water. Nat. Toxins 1: 353-360. https://doi.org/10.1002/nt.2620010606
  32. Pick F.R. and Lean D.R.S. 1987. The role of macronutrients (C, N, P)in controlling cyanobacterial dominance in temperate lakes. N.Z. J. Mar. Freshwat. Res. 21:425-434. https://doi.org/10.1080/00288330.1987.9516238
  33. Rapala J. and Sivonen K. 1998. Assenssment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different teperatures. Microb. Ecol. 36: 181-192. https://doi.org/10.1007/s002489900105
  34. Sherman B.S., Webster I.T., Jones G.J. and Oliver R.L. 1998. Transitions between Aulacoseira and Anabaena dominance in turcid river weir pool. Limnol. Oceanogr. 43: 1902-1915. https://doi.org/10.4319/lo.1998.43.8.1902
  35. Sivonen K., Himberg K., Luukkainen R., Niemila S.L, Poon G.K. and Codd G.A. 1989. Preliminary characterization of neurotoxic blooms and strains from Finalnd. Tox. Assess. 4: 339-352. https://doi.org/10.1002/tox.2540040310
  36. Skulberg O.M., Carmichael W.W., Codd G.A. and Skulberg R. 1993. Taxonomy of toxic cyanophyceae (cyanobacteria). In: Falconer LR. (ed.), Algal Toxins in Seafood and Driking Water. Academic Press, London. pp. 145-164.
  37. Vaishampayan A., Sinha R.P. and H der D.-P. 1998. Use of genetically improved nitrogen-fixing cyanobacteria in rice paddy fields : Preospects as a source materal for engineer-ing herbicide sensitivity and resistance in plants. Bot. Acta. 111: 176-190. https://doi.org/10.1111/j.1438-8677.1998.tb00693.x
  38. Velzeboer R, Drikas M., Donati C., Burch M. and Steffensen D. 1995. Release of geosmin Anabaena circinalis following treatment with aluminium sulphate. Wat. Sci. Technol. 31: 187-194.
  39. Vollenweider, R.A. 1968. Water Management Research; ScientificFundamentals of the Eutrophication of Lakes and FlowingWater, with Particular Reference to Nitrogen and Phosphorus asFactors in Eutrophication. OECD, Paris, Technical ReportDAS/CSI/68.27.
  40. Watanabe M. 1992. Studies on planktonic blue-green algae 4.Some Anabaena species with straight trichomes in Japan. Bull. Natn. Sci. Mus., Tokyo, Ser. B.18: 123-137.
  41. Watanabe M. 1998. Studies on planktonic blue-green algae 8. Anabaena species with twisted trichomes in Japan. Bull. Natn. Sci. Mus., Tokyo, Ser. B. 24: 1-3.
  42. Watanabe M. 1999. 日本のァオコ.
  43. Willen T. and Mattsson R 1997.Water-blooming and toxin-producingcyanobacteria in Swedish fresh and brackish waters, 1981-1995. Hydrobiologia 353:181-192. https://doi.org/10.1023/A:1003047019422
  44. Wolk C.P. 1996.Heterocyst formation. Ann. Rev. Genetics 30: 59-78. https://doi.org/10.1146/annurev.genet.30.1.59
  45. Zevenboom W. and Mur L.R. 1980. $N_2$ fixing cyanobacteria, why they do not become dominant in Dutch hypertrophic lakes. Dev. Hydrobiol. 2: 123-130.

Cited by

  1. Phytoplankton Flora and Community Structure in the Lower Nakdong River vol.26, pp.2, 2007, https://doi.org/10.5338/KJEA.2007.26.2.159
  2. Spatiotemporal and Longitudinal Variability of Hydro-meteorology, Basic Water Quality and Dominant Algal Assemblages in the Eight Weir Pools of Regulated River (Nakdong) vol.51, pp.4, 2018, https://doi.org/10.11614/KSL.2018.51.4.268