DOI QR코드

DOI QR Code

Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip

논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성


Abstract

The vortex flow and aerodynamic load characteristics of a $65^{\circ}$ sweep delta wing with the leading edge extension in sideslip condition is investigated experimentally. The freestream velocity is 40 m/sec, which corresponds to a Reynolds number per meter of $1.76{\times}10^6$ based on the wing root chord. The angles of attack range from $12^{\circ}$ to $28^{\circ}$, and the sideslip angles treated are $0^{\circ}$ , $-10^{\circ}$, $-20^{\circ}$. The LEX vortex of the leeward side. The LEX and wing vortics coalesce to to become a concentrated strong vortex or to break down at down at downstream position. Due to the interation of the LEX and wing vortices, a high suction pressure is maintained on the windward wing surface, and a low suction pressure is formed on the leeward wing surface

옆미끄럼이 있는 조건에서 LEX를 갖는 $65^{\circ}$ 후퇴각 삼각날개의 와류와 공력 특성을 실험적으로 연구하였다. 자유 유동속도는 40m/sec이고 이 속도와 날개뿌리 시위를 기준으로 한 단위길이당 레이놀즈 수는 $1.76{\times}10^6$이다. 받음각 범위는 $12^{\circ}$ 부터 $28^{\circ}$ 까지 이고, 시험된 옆미끄럼각은 $0^{\circ}$ , $-10^{\circ}$ , $-20^{\circ}$ 이다. 날개의 바람쪽에 있는 LEX 와류는 바람 반대쪽 LEX 와류보다 훨씬 더 강하고 날개면에 더 가깝게 날개 후류영역으로 진입한다. LEX 와류와 날개 와류는 서로 연동하여 집중되고 강한 와류를 형성하거나 날개 하류지역에서 붕괴된다. LEX 와류와 날개 와류의 상호작용으로 인하여 바람쪽 날개면에는 높은 흡입압력이 유지되고, 바람 반대쪽 날개면에는 낮은 흡입압력이 형성된다.

Keywords

References

  1. Erickson, G. E., Schreiner, J. A., & Rogers, L. W., "On the Structure, Interaction, and Breakdown Characteristics of Slender Wing Vortices at Subsonic, Transonic, and Supersonic Speeds," AIAA Paper 1989, AIAA-89-3345.
  2. Hoeijimarkers, H. W., and Vaatstra, W., "Vortex Flow over Delta and Double-Delta Wings," J. of Aircraft, Vol. 20, No. 9, 1983, pp. 825-832. https://doi.org/10.2514/3.44949
  3. Verhaagen, N. G., "Effects of Reynolds Number on the Flow over 76/40-deg Double-Delta Wings," AIAA Paper 99-3117, 1999.
  4. Olsen, P. E., and Nelson, R. C., "Vortex Interaction over Double Delta Wings at High Angles of Attack," AIAA paper 89-2191, July 1989.
  5. Ekaterinaris, J. A., Coutley, R. L., Schiff, L. B., Platzer, M. F., "Numerical Investigation of High Incidence Flow over a Double-Delta Wing," J. of Aircraft, Vol. 32, No. 3, 1995, pp. 457-463. https://doi.org/10.2514/3.46742
  6. Kern, S. B., "Vortex Flow Control Using Fillets on a Double-Delta Wing, " J. of Aircraft, Vol. 30, No. 6, 1993, pp. 818-825. https://doi.org/10.2514/3.46422
  7. 이기영, 손명환, 장영일, “연장된 앞전을 부착한 델타형 날개에서의 와류 상호작용에 관한 연구,” 한국군사과학기술학회 논문집 제4권 제2호, 2001. 12., pp. 215-224.
  8. Ericsson, L. E., "Vortex Characteristics of Pitching Double-Delta Wings," J. of Aircraft, Vol. 36, No. 2, 1999, pp. 349-356. https://doi.org/10.2514/2.2464
  9. Verhaagen, N. G., and Naarding, S. H. J., "Experimental and Numerical Investigation of Vortex Flow over a Sidesliping Delta Wing," J. of Aircraft, Vol. 26, No. 11, 1989, pp. 971-978. https://doi.org/10.2514/3.45869
  10. Manor, D., and Wentz, W. H. Jr., "Flow over Double-Delta Wing and Wing Body at High $\alpha$, " J. of Aircraft, Vol. 22, No. 1, 1985, pp. 78-82. https://doi.org/10.2514/3.45083
  11. Grismer, D. S., and Nelson, R. C., "Double-Delta-Wing Aerodynamics for Pitching Motions with and without Sideslip," J. of Aircraft, Vol. 32, No. 6, 1995, pp. 1303-1311. https://doi.org/10.2514/3.46879
  12. Herbbar, S. K., Platzer, M. F., and Chang, W-H, "Control of High-Incidence Vortical Flow on Double-Delta Wings Undergoing Sideslip," J. of Aircraft, Vol. 34, No. 4, 1997, pp. 506-513. https://doi.org/10.2514/2.2220
  13. Cunningham Jr., A. M., and den Boer, R. G., "Low-Speed Unsteady Aerodynamics of a Pitching Straked Wing at High Incidence-Part II: Harmonic Analysis," J. of Aircraft, Vol. 27, No. 1, 1990, pp. 31-41. https://doi.org/10.2514/3.45893
  14. 손명환, 이기영, 백승욱, “옆미끄럼각이 삼각 날개 와류에 미치는 영향”, 한국항공우주학회지 제30권 1호, 2002. 2., pp. 1-8.
  15. 이기영, 손명환, “압력분포 측정에 의한 델타익/LEX 와류 특성 연구,” 한국항공우주학회지 제29권 제 8호, 2001. 12., pp. 18-25.