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Formulation of Dynamic Vehicle-Bridge Interaction Problems

Gyu Sei Yi'

Abstract

In this papers, a finite element formulation is proposed for dynamic analysis of vehicle-bridge
interaction problems under realistic loading conditions. Although the formulation presented in this
paper is based on the consideration of only a single traversing vehicle, it can be extended to
include several different bridge configurations. The traversing vehicle and the vibrating bridge
superstructure are considered as an integrated system. Hence, although material and geometric
nonlinearities are excluded, this introduces nonlinearity into the problem. Various vehicle models,
including those with suspension systems, are considered. Traveling speed of the vehicle can be
varied. The finite element discretization of the bridge structure permits the inclusion of arbitrary
geometrical configurations, and surface and boundary conditions. To obtain accurate solutions,
time integration of the equation of vehicle-bridge motion is carried out by using the Newmark

method in connection with a predictor-corrector algorithm.
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Introduction

In this paper, a finite element based procedure
is formulated for the analysis of vehicle-bridge
general traffic
conditions. An accurate dynamic response of
bridge structures is obtained by modeling both
the vehicle and the bridge structure in a
relatively realistic manner. The accuracy in

interaction problems under

solution is obtained by taking into account (a)
the interaction between vehicles and bridge and
(b) bridge type and

characteristics, (c) vehicle characteristics and

that among vehicles,

operating conditions, and (d) roadway surface
roughness. Such an analysis procedure may be
considered unnecessarily complex to implement
into a conventional bridge design process.
Conventional bridges have been successfully

designed on the basis of existing code pro-
cedures. Traditionally, a so—called impact factor
is used to take into account the dynamic effects
induced by traversing vehicles. This is done by
predicting the static response of the bridge
superstructure on the basis of equivalent live
loads representing several different truck loading
conditions. Then, static stress resultants are
amplified by using an impact factor. These
amplified values constitute the basis for design.
The impact factor is established to represent the
ratio of the difference between the maximum live
load dynamic and static responses to maximum
live load static response. However, there is no
clear definition of impact factor, and its
interpretation widely varies in the literature. For
this reason, this paper uses the term dynamic
amplification factor (DAF).
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It is noted that, although an amplified static
analysis process may provide adequate and safe
designs, it cannot reflect the true characteristics
of bridge dynamics and performance. On the
other hand, a realistic analysis based design
method,
process, can provide sufficient information about
the true behavior of bridge structures. Clearly,
this provides true safety and economy in design.

in- connection with an optimization

Although a realistic analysis procedure is more °

extensive and effort consuming, it permits the
consideration of general traffic conditions, rather
than a limited number of equivalent vehicle
loadings. Such an analysis may supplement
experiments since it is usually not practical to
operate several experimental trucks simul-
taneously. This type of extensive analysis may
be an excellent tool in evaluating existing
bridges for additional as well as new loading
conditions. Furthermore, it may help provide
appropriate speed and truck load limits, and
establish guidelines on evaluating truck sus-
pension systems. Hence, efforts in developing an
analysis method such as the one described in
this paper, are essential.

A pioneering work involving an analytical
approach for determining the dynamic response
of highway bridges is presented by Fleming and
Romualdi (1961). Relatively updated reviews of
the literature conceming vehicle-guideway in-
teraction problems are provided by Ting and
Yener (1983), and Yener and Chompooming
(1991a). Traditionally,

behavior, the interaction between the vehicle and

in formulating bridge

the bridge is neglected. This approach, commonly
referred to as the moving force approximation,
physically corresponds to neglecting the dynamic
effects of the traversing vehicle on the vibrating
bridge. On the other hand, the procedure which
includes the dynamic effects of the vehicle is
generally referred to as the moving mass
approximation (Yener and Chompooming 1991a).
The solution algorithm proposed in this paper
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takes into account both of these approximations
by considering a number of different vehicle
models in the problem formulation. The wvazhicle
speed can be varied arbitrarily. It is noted that
although, for brevity and clarity, the formulation
presented in this paper is restricted to the
consideration of one vehicle only, multiple
vehicles and arbitrary traversing directions can
easily be accommodated into the problem
formulation. It is assumed that, while traversing
the bridge, the vehicle remains in contact with
the bridge surface. In this paper, the roadway
surface is assumed to be smooth.

Although the material and geometric linearities
are preserved in the formulation, consideration of
the vehicle and bridge superstructure as an
integrated system introduces nonlinearity into the
problem. Roadway surface irregularities, as well
as multiplicity of vehicles, traffic lanes, and
traversing directions have already been con-
sidered (Yener, Chompooming and Yi 1993).
Multiple spans, and material and geometric
nonlinearities will be the topics of future
publications. The implementation of the proposed
solution methodology is described in (Yener,

Chompooming and Yi 1993a).

BRIEF DESCRIPTION OF SOLUTION
PROCEDURE

As mentioned earlier, the consideration of
interaction between the vehicle and bridge results
in a nonlinear structural response. This is due to
the fact that, in each time step, interaction force
vector Fin, hence structure force vector F, varies
in accordance with the vehicle-bridge coupling
motion. Therefore, the solution procedure adopted
is incremental in time.

At the beginning of each discrete time step,
the structural degrees of freedom (DOF's) are
predicted on the basis of previously determined
quantities in accordance with the Newmark
method (Newmark 1959). Then, the vehicle
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Fig 1. Major Tasks in the Structural Analysis Module

DOF’s are determined based on the predicted
structural DOEF’s. The interaction force wvector,
due to the vehicle-bridge system, is evaluated
and added to the structure force vector. Based on
the predicted values of structural DOF's and the
interaction force, the governing matrix equation
of vehicle-bridge motion is evaluated. If the
governing equation is satisfied within a specified
tolerance, the iterative process is completed for
the current time step. Otherwise, the structural
DOF’s are corrected and the iterative process
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within the current time step is continued. If
desired, once the nodal displacements, velocities,
and accelerations are determined, stresses in the
elements can be computed.

A depiction of the solution algorithm is given
in Fig. 1. The input data primarily consist of
bridge geometry, bridge boundary conditions,
dis—
cretization data, and material properties. The

vehicle characteristics, finite element
finite element discretization of space domain is

carried out on the basis of the discretization
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Fig 2. Various Vehicle Models

input data. The matrix equations of motion are
These
equations are assembled to obtain the structure

set up for the elements and vehicle.

matrix equation of motion on the basis of
element connectivity. Clearly. consideration of
such a procedure requires a discussion, as well
as the formulation, of wvehicle, structure, and
interaction models.

VEHICLE MODELING

Most heavy vehicles consist of several major

components, such as tractors, trailers, and

suspension systems. These characteristics of
vehicles are generally modeled by a set of
springs and dampers. Fig. 2 illustrates the
vehicle models used in this investigation, which
range from a simple moving force model to a
elaborate two-dimensional model.

Suspension systems are idealized by a finite

relatively

number of elements, consisting of rigid mass,
linear spring, and viscous damper elements. As
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indicated in Figs. 2d and 2e, tires are similarly
modeled by an assemblage of spring and damper
elements. The spring and damper coefficients are
generally determined from experimental data.
The moving force model (MF) shown in Fig.
2a is included for comparison with moving mass
models of varying complexity. The simple
moving mass model (IDMM-1) in Fig. 2b has
DOF  which the wertical
displacement of the tire contact point A directly
under the vehicle axie. The moving mass—
damped spring models (1DMM-2 and 1DMM-3)
in Figs. 2c and 2d have two and three DOF’s,
respectively. In the two-dimensional six DOF's
model (2DMM, Fig. Ze), the interaction between
tractor and trailer is considered directly through

one represents

the motion of rigid mass m0. Furthermore,
appropriate combinations of models 1DMM-3 and
2DMM can be used to represent a variety of
multi-axle heavy vehicles. It should be noted
that three-dimensional vehicle models with
additional DOF's can also be considered in the
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problem formulation. However, in general, the
effects of roll motion of the vehicle on bridge
dynamics are of relatively little importance as
compared to those of pitch and vertical motion
(Huang 1976).

MODELING OF BRIDGE STRUCTURE

Bridge Superstructure

For illustrative purposes, highway bridge su-
perstructures consisting primarily of a concrete
deck slab and steel girders are considered in this
study. Bridge girders and, if included, transverse
diaphragms are considered as an assemblage of
beam elements. On the other hand, the deck slab
is modeled as an assemblage of plate elements.
The flexural, torsional, membrane, and shear
in the

formulation of both beam and plate elements, Fig.

modes of vibration are considered

3 shows the DOF's, as well as the corresponding
nodal forces, for beam and plate elements. The
modeling scheme permits the consideration of
any number of lanes on the deck.

Bridge Substructure

The bridge substructure can be modeled as
either a rigid mass or an assemblage of plate
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and/or beam elements resting on a stable
foundation. When the substructure is considered
as a rigid mass, it is implied that the explicit
consideration of substructure is not included in
the analysis. When the bridge substructure is
represented as an assemblage of plate and/or
the
superstructure and substructure
taken into account. Due to the nature of the finite
element algorithm used in this study, bridge
bearings are assumed not to permit longitudinal

beam elements, interaction between the

is  implicitly

movement of the superstructure with respect to
the substructure.

VEHICLE-BRIDGE INTERACTION
KINEMATIC COUPLING

A difficulty in analyzing vehicle-bridge in-
teraction problems involves finding an ap~
propriate procedure for treating the kinematic
coupling of the vehicle-superstructure system.
To illustrate the kinematic coupling, we consider
the following generic form of the equation of
motion of the simplified vehicle-bridge system

shown in Fig. 4 at vehicle contact point A.

Mw+C w+Kw=f? (v
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Fig 4. Vehicle Traversing on a Simple Bridge Model
depends on the superstructure motion at the
in which the superstructure properties are vehicle contact point. This interdependency of

represented by M(mass), C(damping), K(stiffness),
and wi(displacement). The displacement function
w represents the vertical displacement of the
superstructure at the contact point at time t, ie,
at x==x4(d. The notations w and w re-
present the corresponding velocity and accel-
eration, respectively, in which superposed dots
denote time derivatives. Since the position of
vehicle contact point A varies with time t, it is
implied that any quantity, which is a function of
the position of the vehicle contact point, is also
an implicit function of time. It is noted that the
bridge is modeled as a one-dimensional simple
structure in Fig. 4 for the sole purpose of clarity
in presenting the following argument.

The term f in (1) represents the interaction
force between the vehicle and the superstructure,
which can be viewed as the force exerted by the
moving vehicle on the bridge surface. Hence, our
objective appears to be conventional in that we
seek, for an extemnally applied time dependent
load 7 the solution of the linear, second order
ordinary differential equation given in (1) for w.
However, for a moving mass problem such as
that illustrated in Fig. 4, interaction force f @ is
a function of the vehicle motion, which in turn
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motions is generally referred to as the kinematic
coupling of the vehicle-bridge system. Con-
sequently, it can be concluded that f% is a
function of among others, w and its derivatives.
Hence, at each time step, f? in (1) is not
known a priori, and rather is a function of
unknowns w and its derivatives, as well as the
and DOF’s. Such
consideration of the kinematic coupling in the

vehicle characteristics

determination of interaction force f< renders (1)
nonlinear, and introduces response nonliriearity.
kinematic coupling is

Clearly, when the

neglected, F? simply is an externally applied
force being a function only of time. The resulting
problem is of the moving force type.

Prior to discuss the details of the mathematical
formulation, it would be beneficial to briefly
mention the characteristics of the generalized
governing differential equation of motion of a
structural system.

SEMIDISCRETIZED MATRIX
DIFFERENTIAL EQUATION OF MOTION

The general form of the differential equation
of motion of a structural system can be semi-

SR EA A =, A2d 45 20029 129



discretized with respect to space coordinates, and
written in matrix form as (Hughes 1987)

MD+CD+KD=F 2

where M, C, and K are the mass, damping, and
stiffness matrices for the system, respectively.
D = D(¢) is the nodal displacement vector of

semi-discretized system, and D and D are the
corresponding nodal velocity and acceleration
vectors, respectively.

Fin (1) is the structure force vector, which is
a function of time t and consists of external
force components. The interaction force produced
by the traversing vehicle, and gravity loads of
the vehicle and bridge structure, are considered
as external loads. Furthermore, an eguivalent
uniformly distributed wind load can be imposed
on the superstructure if required, as well as the
equivalent static force when bridge structure is
located in the region where earthquakes may be
anticipated. Wind loads and other types of loads
on both super and substructures, and on tra—
versing vehicles, may also be considered.

EQUATIONS OF MOTION OF
VEHICLE MODELS

A general form of the vehicle equation of
motion can be written as

md+cd+kd=Ff (3)

where m, ¢, and d are the mass, damping, and
stiffness matrices of the lumped vehicle model,
respectively. d is the vector of DOF’s re-
presenting the motion of the vehicle model. d
and ¢ are the corresponding velocity and

acceleration vectors, respectively, and f is the
corresponding vector of external forces. The
vehicle DOF's can be partitioned as
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d:(—d‘%)and f=(~f%) (4)

where the superscript cp refers to the DOF's at
the contact point and r represents the remaining
DOF’s.

One-Dimensional Heavy Vehicle Models
One-dimensional models discussed in this
section refer to those shown in Figs. 2a through
2d. In the equations of vehicle motion, m denotes
the lumped mass of the vehicles, g the
acceleration of gravity, k the spring constant, c

the damping constant, and f % the force exerted

on the superstructure at the contact point by a
moving vehicle.

MF Model - In Fig. 2a, the MF model is
This force,
produced by the static weight of the vehicle, can
be calculated from

represented by a single force.

" =mg 5)
1DMM-1 Model - Since neither damping nor

spring is used for 1DMM-1 model in Fig. 2b, (3)
becomes

md?® =f%— mg (6
1DMM-2 Model -For 1DMM-2 model shown

in Fig. 2c, (3) can be written as (Yener and
Chompooming 1991b)

m, 0 dly c; —cy 221’

ki —k di — | Tm. g

R I ey
(7

1DMM-3 Model ~ For 1DMM-3 model shown
in Fig. 2d, (3) takes the form (Yener and
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Chompoorming 1991b)

my 0 0 c-i'{ Co —C3 0 a"g
0 m 0 ar + |—cy ¢yt —c; ar
1 1
0 00 d-'m —C C d'cp
ky —ky 0 d; —my
+ —kz kz‘f‘kl _kl di’ = —m,g
0 —kl kl dq, fCP

8

It should be noted that, in the absence of my,
ko, and ¢z, (8) can be reduced to (7).

EQUATION OF MOTION OF BRIDGE
MODEL

The equation of motion for plate elements is
formulated based on the Reissner-Mindlin plate
theory, in which the Kkinematic relationships
contain
Chompooming 1991b). Membrane contributions

shear  deformations (Yener and
are considered in the determination of plate
stiffness. The equation of motion for beam
elements is formulated based on the Timoshenko
beam theory, which takes into account the shear
deformations. Axial and torsional contributions
are considered in the determination of beam
stiffness.

The semi-discretized equation of motion for
plate and beam elements can be written as

M¢D®+ C°D°+K°D°=F° 9)

where M¢ and K° are the element mass and
stiffness matrices, respectively. C° is the

viscous damping matrix, and F ¢ the element
nodal force vector.

Plate Elements
Nodal Displacement Vector — We define the

nodal displacement vector D ° for plate element e

as
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e __ e e e e e
D= (wh,ws,ws,00,60%, ...,
e e e e e
Wigy W2, w3a, 61(1) BZa, cee s
e e e e e T
Wik Whnor Wn,s 01, 052,)

(10)

where a=1,...,nen, in Which nen is the number of
element nodes. Element nodes are numbered in
the counterclockwise direction. As implied in
(10), there are 5 DOF’s at each node of element
€. The total number of DOF’s for element e is
then equal to Snen. For example, for the 4-node
plate element (a=1,..,4), the 20x1 element nodal
displacement vector can be written as

e __ e e e e e e e

D®= (wn,wy,ws, 00,05, wh, wh,
e (4 e e e e e
w3, 01, On, wiz, Wy, wa, 01,
e e e e e e\ T
0%, Wiy, Way, W3, 014, 05)

Fig. 5 shows each component of D° for a
4-node, bilinear plate element in the local
coordinate system.

Stiffness Matrix — The element stiffness
matrix K ° can be written as a combination of

bending stiffness Kj shear stiffness K and

membrane stiffness K, (Yener and Chompoom-
ing 1991b).

K° =K} + K + K;, an
where
e __ T b b
K;= [ B"D'BYaA,

k= [ B'DBA, (12)
B

K; = [, B"'D"B"dA

In these eXpreésions, A ¢ is the area of the plate
element. The constitutive matrices D? D° and

D™  and strain-displacement matrices B, B®,

S Al A ke =, A2 4% 20029 129
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Fig. 5 Nodal Displacement Components for the Plate element

and B™

Mass Matrix -~ The element mass matrix

M°? can be written as (Yener and Chompooming
1991b)

M® = [M;)] (13)
where
M =8, fAENdmI,N,,dA (14)

and N, is the element displacement shape
function associated with note a, and & is the
Kronecker delta. Furthermore, p=5(a-1)+, and
q=5(b-1)+]. Indices a and b range from 1 to #
and I and j range from 1 to 5. The notation m,
is equal to pt, when i=j=1,2,3, corresponding to
transverse and in-plane inertia forces, and
m = ;) 3/12 when i=j-4,5, corresponding to
rotary inertia. p is the element mass density, and

¢, the plate element thickness.

Force Vector - The element nodal force

vector F°
Chompooming 1991b)

can be written as (Yener and

Formulation of Dynamic Vehicle-Bridge Interaction Problems

F¢ ={F% (15a)

where
Fi= f 4 N F dA corresponding to DOF
Jj=5%a-5+]
Fi = fA N ,CidA corresponding to DOF
j=5a-2+k
(15b)

in which F', for i=1,2,3, are the total applied
force components per unit area in the X, y, and z
directions, and C,, for k=1,2, are the total applied

coupling force components per unit area about

the x and y axes.

Beam Elements

Nodal Displacement Vector - We define the
nodal displacement vector D for beam element
e as

De: (wflyw2615w3el’gfl’0§1r6§1!-"r

e e e e e e
Wi Wags W3as O1a, B0, 05, -,

e e e e e e T
wlne,,’ w2nm, w3ne,,’ 61712"’ 927!“’ 6341“)

(16}

There are 6 DOF’s at each node of element e.
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The total number of DOF's is equal to 6# ., Fig.

6 shows the components of D€ for a 2-node,
linear beam element in the local coordinate
system.

Stiffness Matrix — The element stiffness
matrix K° can be written as a combination of
Kj  shear

bending  stiffness stiffness K&,

torsional stiffness K and axial stiffness K¢

matrices (Yener and Chompooming 1991b).
K'=K; + K+ K + K, amn

where

I 2° .
e __ bT b b e __ s"Tysps
Kb#foBDde, Ks—foBDde
(18a)

ki = [ B (6r)Bldx, K; (155)
=f0[eB“T(EAe)B“dx

where E and G are the material Young’'s
modulus and shear modulus, respectively. The
constitutive matrices are D® and D° and the
strain—displacement matrices B® and B® The
notation £ ¢ is the length of the beam element,
A ° the cross-sectional area, and J° = I3 + 15,

where I3 and I35 are the moments of inertia

about v and z axes, respectively.

Mass Matrix — The element mass matrix

M? can be written as (Yener and Chompooraing
1991b)

M= [M5] 19)
where

5°
M;q: é\ijf() NambNbdx ‘203.)

in which p = 6(a-1)+, and q = 6(b-1)+j, with
indices a and b ranging from 1 to #,, and I
and j from 1 to 6. The values of m, are given

as

mp = pA° when 1<i=j<3 (20b)
ol° when i=j=4
my =] ol when 1=j=15
ol § when 1=j=6

(20c)

Force Vector - The element nodal force

vector £ ¢ is (Yener and Chompooming 1991b)

F¢={F}} (21a)

Fig 7. Nodal Displacement Components for the Beam Element
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Fi{= f 0 N,F dx corresponding to DOF
j=6a-6+i
F!= fo N,C dx corresponding to DOF

j=6a-3+k (21b)

In 21b), a=l,.,#,, and F,; for i=1,23 are
the applied force components per unit length in
the x, y, and z directions. C; is the applied
twisting moment per unit length, and C, and
C; are the applied bending moments per unit

length about the y and z axes, respectively.

Viscous Damping in Bridge Structures

In this paper, the viscous damping, for which
the induced damping force is assumed to be
proportional to the relative velocities, is used to
take into

phenomenon that occurs during vibration. The

account the energy dissipation
viscous damping matrix, for both the plate and
beam elements, is assumed to be proportional to
the element mass and stiffness matrices (Hughes
1987).

Ce = CMMe + CKKZ (22)

where Cy and C g are the parameters to be

selected to produce desired damping char-
acteristics.

SOLUTION ALGORITHM FOR THE
VEHICLE-BRIDGE SYSTEM

Definition of the Problem

The finite element matrices of beam and plate
elements, and equivalent nodal forces due to
interaction and other external loads, can be
assembled to obtain the semi-discretized matrix
equation of motion for the discretized structural
system in the form of (2). It should be noted
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that, at this stage, the nodal boundary conditions
including prescribed nodal displacements, forces,
and moments are already imposed into (2).

The current initial-value problem consists of
finding a displacement vector D=D(t) which
satisfies (2) and the given initial conditions

D) = uy, DXO) = u, (23)

where % and u, are the vectors of speci-

fied iitial values of nodal displacements and
velocities, at time t=0, respectively.

To obtain an approximate solution, the semi-
discretized matrix equation of motion is further
discretized with respect to time on the basis of
the Newmark method in connection with
predictor-corrector scheme (Fox and Mayers
1987). A detailed description of this solution

procedure is given in the following section.

Time Discretization of the System Equation
For brevity, the following discussion is based
on vehicle model 1IDMM-2 in Fig. 2¢, which has
only one contact point where the vehicle mass is
not in direct contact with the roadway. We note
that the time discretized form of the governing
matrix differential equation (2) is algebraic. In
order to reflect this characteristic of the

governing equation, in the following expressions,
D(t,), D(t,), and D(t,) are replaced by
D, V,and A, respectively. f,is the time
at step n, which indicates the discrete time index.
Furthermore, notations d,, v, and a , denote
time discretized values of vehicle DOFs at ¢, ie,
d,= dt,), v,= di,), and a,= d(t,).
As the solution is advanced to the next time

step, the time discretized vehicle-bridge equation
of motion can be written as

MA , + CV,+ KD,y = F 44y (24)
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In this equation, A 41, V,+1, and D,y
are the nodal DOF’s of the bridge structure at

time t,4+;, which we refer to as the current time

step. The nodal force vector F .., Iis
constructed by adding the interaction force
vector, F 5, induced by the vehicle-bridge
coupling motion, to the specified external load
vector, F¥. F* may be composed of dead
weight of the bridge structure, as well as
equivalent wind and earthquake loadings. F € is
the equivalent nodal force vector due to the
interaction force developed at contact points
along the vehicle traversing path.

For 1DMM-2 vehicle model, the interaction
force at time f,+1, fi4, can be determined

from (7) and written as

f;77+1 :k1(d¢“‘d17) nt+l ‘*‘Cl(vcﬁ—vly)
(25)

In (25), d? and v are the vehicle DOF's at
the contact point, and & and v] the DOF’s of
vehicle mass #m;, indicating the remaining

vehicle DOF’s. f< is the interaction force on
superstructure at the contact point.

Since DOF’s at the vehicle contact point d @,

cp cp

v? and @ are interrelated to the super-
structure DOFs, the structure force vector can be

written symbolically as

Fap = 0ldF3 + F 5y
( Dnm-H’ szp+1» A?—H, d i1, an+l)

(26)

It is emphasized that F ., is a function of
vehicle DOF's d, v, and @, as well as the
corresponding structural DOF’s of the plate
element containing the contact point D ¥, V%,
and A%

The finite-difference representation of dis-

placement and velocity vectors at time ¢,+),

108

based on the Newmark method, can be written
as

Dn+1:
D42tV + L A (1-28) A, +284 ,01]
(27a)

Vn+l: Vn+dt[(1_7)An+7A n+1] (‘Z7b)

where 4t is the time increment from time £, to

f,+1, and B and ¥ are the parameters

governing the stability and accuracy of the
algorithm. Substituting (27) into (24) permits us
to write (24), in a symbolic form, in terms of the

primary unknown A 4, as

MA .1+ CV (A, )+ KD 1 (AL
= Fn+1(Aff+1, d,i1, Vo, @,40)

(28)

The terms containing subscript n represent
values determined at the previous time step, and
therefore are not explicitly included in (28). (28)
is written in symbolic form to emphasize that the
interaction problem is nonlinear in nature, and
may best be solved using an iterative process. In
this paper, a multi predictor—corrector procedure,
in connection with the Newmark method, is
employed in the solution of (28). In this process,
the currently corrected values are treated as
predictors in the proceeding step, and hence
predictor-corrector procedure is repeated until the
desired accuracy is obtained.

Multi Predictor-Corrector Solution Scheme
To initiate the multi predictor-corrector process

within the current time step, a value for A ,4,; in
(28) needs to be assumed. This value may be
designated as A Y%,; and can be taken as zero,

where superscript O is the initial value of
predictor—-corrector iteration index 1. On this basis,

from (27), V%, and DY, can be compuied as
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Fig 8. Vehicle Model 1DMM-2 on a Plate Element

DY =D,+4tV, +—%(1—2B)At2A , (29)
Vii=V,+0-naA, (29b)
It should be emphasized that A% ., =

0, V%, and D%, in (29) are described in
terms only of the previously determined guantities
at ¢, With valuesof A%, Vi, and D%y,

it is now necessary to determine the
corresponding fore vector in (28). At this point,
from an implementation perspective, it becomes
convenient to update the iteration index i, and
start the predictor-corrector loop. Furthermore, to
emphasize that the initial predicted values of the
vehicle-bridge

A ntls Vn+1y

system consist not only of

%, but also of Fnﬂ, the
force vector is designated as F '3} in terms of
AL, Vi and D3l As indicated in (26),
F i3l is a function of interaction force basis of
the predicted values of the structural ( F 5.p) 7™
the determination of which, on the DOF’s, is
discussed below.

Basedon D i} and Vi.} the vehicle DOF’s

at the contact point, d %, and V2., can be
approximated through the wuse of element

displacement shape functions of the plate element
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containing the contact point (Fig. 7). It is noted in
passing that for vehicle model 1DMM-1, DOF’s

at the contact point also include a ®. Knowing

the approximated values of d %, and » 3,

the remaining vehicle DOF's, d .+, v n41, and

a ., can be determined from the equation of

vehicle motion, which can be written in the

following form.

d] { n+l) [ CrT cm] [U;+1] o
Cp m @+l ™ el lodn
i r -1
[ (1 n+1] f= fn+1}
B Rl a2 F
(30)

where superscripts r, ¢p, and rcp denote matrix
partitions of matrices m, ¢, and k, and vector f in
the equations of vehicle motion given in (7)
through (8). It needs to be mentioned that for all
moving mass vehicle models in Fig. 2 except for

1IDMM-1 the vehicle mass corresponding to

a® is zero. We note that in order not to

interrupt the flow of discussion, the procedure for
determining d%, v d’, v’,and a’ is
detailed in the following section.

The interaction force at the contact point

(f2.) "} which is currently unknown, can be
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determined from the lower partitioned equations
of vehicle motion in (30). Once the interaction
it can be added to the

interaction force vector ( F 5.y

force is evaluated,
'in the form
of equivalent nodal forces. This completes the
formation of the force vector F i3} in (26) and

the governing equation of the system given in
(28).
After this initial predictor step is completed

A 71+1y

and F .} do not identically

the process is continued values of

Vi D,
satisfy the govermning equation (28). Based on the
values of D!, Vil and A7} and the
interaction fore vector ( F <) "1 at the current
time step, the structure governing equation is
evaluated to determine whether there is any
residual force in the system. From (28), the
residual force vector can be determined as

AF=F - (MAH+ CV S + KD
3D

If 4F is within a specified tolerance, the
process is stopped. Otherwise, the correction
procedure is continued by determining the
additional acceleration vector to balance the
excessive force. This is done by rewriting the
governing equation in an incremental form as

MAA+ CAV + KAD=A4F (32

where, with (27),

dA= A, — A7; (33a)
4V= V,m— V,,H—AtyAA (33b)
AdD=Di,, — DL =484 A (330

and 4 F is given by (31).
(32) can be written in terms of only 4 A, by
substituting (33b) and (33c), as
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4A=[M*] 4F (34

where M* is referred to as the effective

structure mass matrix and is given as
=M+4dty C+4t°8 K (35)

Once 4A is determined, the extreme right
hand sides of (33b) and (33c) can be used to
determine the corresponding incremental values

4V and 4 D, respectively. The predicted values
of A n+1

rected in accordance with (33).

Vil, and D3} can then be cor-

At this point, index i is advanced and F i,
corresponding to the current predicted values
evaluated, and the process continued. Once the
desired accuracy is obtained, we then proceed to
the next time step.

SOLUTION ALGORITHM FOR THE
VEHICLE MOTION

Kinematic Conditions at Vehicle Contact Point

The vertical DOF d of the contact point A
in Fig. 7 can be written as

d?=d?(x,)=wsx, 0 (36)

As indicated in Fig. 7, ws( x, £) is the DOF
corresponding to the global vertical translation of
the bridge deck at point x and time t.

From (36), the velocity of the vehicle

corresponding to the vertical DOF of the contact
point A can be written as

o _dd?  dw, gy dw,
d X, 1) di ox dt T oy
dy oWy
a T ot

(372)
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Because odws/dY and dy/dt are small, the
effect of the product of dws/dY and dy/dt is
negligible. Hence, (37a) can be reduced to

3w3
at

3w3
0x

d(x,0 = () + (37h)

where v(t) denotes the vehicle velocity at time t
along the global x direction. Fig. 4 identifies the
system with

global axes respect to the

longitudinal direction. The vehicle position vector
x 4 is allowed to have components in the y as

well as the x directions. The direction of the
traveling vehicle is determined by the sign of
vehicle velocity. The x component of the vehicle
path is taken along the positive x direction when
v(t) is positive, and along the negative x
direction when v(t) is negative. The same is
valid also for the y component of the vehicle
position.

Based on (37h),
corresponding to the vertical DOF of the contact
point A can be written as

the vehicle acceleration

ww_ dd® _ - N Ows 2, n 0 W3
d?= aF —Zv(t) 0x2+v(t) Foe
) ws ) ws
+ 20( %) Fyey + 72

(37c)

where (f) is the traveling acceleration of the
vehicle in the x direction.

It 1s worth noting that the kinematic coupling
term  &’w 2/0x8t in (37c) arises due to the

spatial and time dependent characteristics of the
vertical displacement of the bridge deck at the
the direct
treatment of the kinematic coupling term is

contact point A. In this paper,

carried out through the application of the
assumed element displacement functions. The

global vertical DOF w 3( x, #) of the bridge deck

can be approximated by using the assumed
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displacement functions for the plate elements as

wyx, = glzva(x, ) wi(D 3R

where w3, is the finite element approximation of

the global vertical DOF at node a of plate
element e containing the contact point.
Using (39), the vehicle DOFs at the contact

point A can be written as

d?=BT(x) w9 (39a)
d?=uv(H)B ,Tx(x)_w (H+B (%) _w (D (39b)
%= [ UHB ,(x)+ 0 (DB w(x)] 1w s()
+20(DB T (%) _w 5(H+ BT () _w 5(P

(39¢)

where the components of the vector B are the
plate element shape functions associated with
element nodes, and can be written as

B=(Ny,Ny,....Ng,...,N, )T (409

B,, and B,, are the vectors whose

components are the first and the second derivatives
with respect to X, respectively, of the element shape
functions associated with element nodes, ie.,

B .,=(NioNss.o...Noy,...,N,.0" (40b)

B,xx:(Nl,xx,Nz,xx, ceis Ny ...,Nn%xx) T(4OC)

The vectors of vertical DOFs of the plate
element, and the corresponding velocities and
accelerations, can be written respectively as

wi(D=(w5 (D, wh D, ., w59, w§,, (D)7
(41a)

_wi(D=(w5(, wiHH,..., wi(D, ..., wg ()7
(41b)

_wa()=(w5@, wHD,..., wi(D,..., w5, ()7

(41c)
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Solution of Vehicle DOFs d7, v”, and a”
From (30), at iteration i-1, the matrix equation
of vehicle motion corresponding to the vehicle

DOFs at £,+1, excluding those at the contact

point, can be written as

m'at v R d = (42)

in which wm", ¢”, and k7 are the
partitioned mass, damping, and stiffness matrices
corresponding to @ y+1, Uae1. and  dyy,
respectively, given in (7) through (8). fr+iis a
modified form of f4; For example, for the
1DMM-2 vehicle model,

as

faty can be written

frii=—migtcwdatkiding (43)

Finite-difference approximation of d 54, and

vii1 in (42), based on the Newmakr method

can be written as

= ditatul+ 4 ar

[ —2B8a,+2B8a;n] (4a)
= dp + ot Bany

Va1 = U_; + atl (1 —May+ rayl
= v + Otyasy

(44b)

whrere d 7 441 and 44, are described in

terms of the previously determined quantities at
t, It should be noted that (42) has the same

form as (28) which corresponds to the equation
of system motion. However, the characteristics of
these two equations are considerably different. In
(28), the force vector is dependent on the
structural DOFs which are to be determined.
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This renders (28) to be nonlinear. On the other
hand, as indicated in (43), force vector font; in
(42) can be determined once the vehicle DOFs at
the contact point are computed from structural
DOFs.
accurately determined within the curent time
step by employing a single predictor-corrector
scheme.

After direct substitition of (44), (42) can be

Hence, the solution of (42) can be

written, in terms of primary unknown a4
only, as
”1*a;+1 ::f* (45)
where
m* =m’ 4+ Atyc” + ~tPBET (46a)
= w1 Cr—U:zH - kr_d;+1 (46b)
Vo = vn ol - a,
dha=dit st at(L - 28)a;,

(46c)

in which m* and f* are referred to as the

vehicle effective mass matrix and force vector,
respectively. » 7., and d L, are the pre-
dicted values of wv,; and d 5+, respectively.

(45) can now be solved for aj,, as
aly, = [m*] 7! f* 47

Then, vir4; and d .1 can be corrected in
nt+1 n+1

accordance with (44) as

Uil = U T Oy an,

dje = dy + otPBans, (48)
At this stage, based on the wvalues of
a?ﬂ. vﬁpﬂ, and d, @n+1, Upey and

FIF AR TS =Y, A2W 4% 2002d 12€



d,,, are determined. Then, on the basis of

vehicle DOFs, the interaction force can be
computed as discussed in the following section.

VEHICLE-SUPERSTRUCTURE
INTERACTION FORCE

The magnitude of the moving force, produced
by the MF model in Fig. 2a, can be computed
using (5). The determination of the interaction
force due to the other vehicle models in Fig. Z2b
through 2e is described below.

1DMM-1 Model

By substituting (39¢) into (6), the interaction
force induced by the 1DMM-1 model in Fig. 2b
can be written as (Yener, Chompooming and Yi,
1993)

fP=mg+mlClw,+Cf w;+C¥_w,

(49)
where
C,= v(O)B, , + vH(DB, 4,
Cy, =2v(dB,, C3=28B (50)

It is noted that C,, Cy and Cjin (50) are

evaluated at the contact point A at time t (see
Fig. 2b).

It is obvious from (49) that the interaction
force is a function of the mass, velocity and
acceleration of the moving vehicle. Furthermore,
the nodal DOFs of the superstructure, and their
rate of change with respect to space coordinates
are shown to influence the interaction force.

1DMM-2 Model

Considering the equation of motion in (7) for
the 1IDMM-2 model, the interaction force can be
written as (Yener, Chompooming and Yi, 1993a)
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fP=kW@?—d)+c(d?—- d)) G
Substituting the expressions for vertical
translation d? and Velocity d @ of the contact
point, respectively from (39a) and (39b), into (51)

gives

fm:C0+C17‘_W3+C27‘_1;Z3 (52)
where

Co= —kidi —c,d]

C1 = le + U(t)ClB, X CZ = ClB (53)

It is noted that C,, Cy, and C; in (53) are
evaluated at the contact point A at time t (see
Fig. 2c). For this vehicle model, the interaction
also a function of the vertical
displacement, and the corresponding velocity, of

force is
the sprung mass m.

1DMM-d Model

Comparing the equations of motion in (7) and
(8) indicates that the interaction force due to the
1DMM-3 model has the same form as that
derived for the 1DMM-2 model. Therefore, the
interaction force for this wvehicle model can be
computed by using (52). It is noted, however,
that for the present vehicle model, DOFs d] and

d] of mass m, depend also on masses

and my DOFs dj, d}, and dJ5 spring
constant k, and damping constant c, of the

vehicle suspension model.

2DMM Model

On the basis of the equation of motion in (8)
for the 2DMM model, the interaction forces can
be written as (Yener and Chompooming 1991h)

f?:k:;(dfp—dlr)*'c:;(dlw— dlr) (543)
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P =ki(dy —d3) + ci(dF — di)
(54b)

Substituting approximate expressions for df”

similar to (3%a), and & {? similar to (39b) into
(54a) results in

f2=Co+Clfuwf+cfwt (55)
where
C() = _kadlr — C3 dlry
Cy = k3B(x,) = v(DcyB, (x,),
Cy = c3B(x 4) (56)

with _u_f§4 representing the vector of vertical
nodal displacements of the element containing
point A, and x4 the space coordinates of

contact point A. In a similar mamner, (54b) can
be written as

f@=Cy+Ccluwl+clfw? (57)
where

Cy = —kydf— ¢, dzr,

C4 = k4B(xB) + U(t)C4B, x(xB),

C5 = C4B(x3) (58)

It is noted that C;, C,, and C,in (55) are
evaluated at the contact point A at time t
Similarly, C3, C,, and Cjsin (57) are evaluated
at contact point B at time t. Similar to the
1DMM-3 model, the interaction forces f{ and 7§
of the current vehicle model are implicit functions
of masses m, and m ,, the rigid mass m g and its
DOFs d;, d}, and d 7, where i=3 and 4, and
the mass moment of inertia 74 In addition, the

interaction forces are expressed implicitly in terms
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of spring and damping constants of the suspension
model; 4, k5, ¢y, and c,.

It should be noted that the interaction forces
computed in (49), (52), (55), and (57) are
considered as concentrated loads applied on a
plate element. Therefore, equivalent nodal forces
in the global z direction due to these interaction
forces, which constitute the force vector in (28),
need to be calculated in combination with the
own weight of the bridge, and an equivalent
wind and earthquake loading if desired.

SUMMARY AND CONCLUSIONS

In this paper, a general finite element for-
mulation and solution methodology is presented
for accurate dynamic analysis of vehicle-bridge
interaction problems. The mathematical formu-
lation takes into account the parameters which
significantly affect the dynamic behavior of
bridge structures. These parameters include such
bridge superstructure characteristics as mass,
stiffness and damping properties, and natural
Furthermore,

acteristics as axle spacing, speed, acceleration,

frequencies. such vehicle char-
and traveling path are also considered. The
time-varying vehicle load, which is referred to as
the interaction force, is determined by taking into
account the bouncing of the vehicle on its
suspension and by considering the traversing
vehicle and the vibrating bridge as an integrated
system. The Newmark method, in connection
with a multi predictor—corrector scheme, is used
to obtain discrete time-histories of bridge
dynamic response.
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APPENDIX NOTATION

The following symbols are used in this paper:
D, D, D = structure nodal displacement,
velocity, and acceleration vectors;
D¢ = element nodal displacement vector;
Doty Var1, A = nodal

displacement, velocity, and acceleration vectors at
time step n+l;

structure

p [~ cp
Dn+1y Vn+1, An+l

velocities, and accelerations of the plate element

= nodal displacements,

containing the contact point at time step n+1;
d, d,

and acceleration vectors;

d = vehicle displacement, velocity,

d’, @ ? = vehicle

v?, a = displacement,

velocity, and acceleration vectors at the contact
point;

d”, v7, a” = vehicle displacement, velocity, and
acceleration vectors excluding DOFs at the contact
point;

Te1. v 54 = vectors of the predicted
values of d” and v " at time step n+1;

F = structure force vector;

F ., = interaction force vector at time step n+l;

.1 = specified structure external force vector
at time step n+1;
f = vehicle force vector;
F = vehicle force at the contact point;
F™ = modified f7
F7 = vehicle force vector associated with d7;
f* = vehicle effective force vector;

M, C, K = structure mass, damping, and
stiffness matrices;

M°¢, C° k° = element mass, damping, and
stiffness matrices;

M* = structure effective mass matrix;

m, c¢, k = vehicle mass, damping, and stiffness
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matrices;

m#* = vehicle effective mass matrix;

N, = element displacement shape function
associated with node a;

uy, u, = vectors of specified values of nodal
displacements and velocities,

w, w, w = vertical displacement, velocity, and
acceleration of the superstructure at the contact
point;

w3 = vertical displacement of the bridge deck at
the contact point;

w3 W, w4 = vector of nodal vertical
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displacements, velocities, and accelerations of the
plate element containing the contact point;

wf] = translation of node j along direction 1 of
element e;

B, 7 = parameters governing stability and
accuracy for time integration;

aD, 4V, A4A = vectors of corrected values of
D, V, A

AF = residual force vector;

At = time step increment; and

% = rotation of node j about axis i of element e.
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