DOI QR코드

DOI QR Code

The Determination of the Partial 28S Ribosomal DNA Sequences and Rapid Detection of Phellinus linteus and Related species

  • Park, Hyung-Sik (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Gi-Young (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Nam, Byung-Hyouk (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Jae-Dong (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Published : 2002.06.30

Abstract

Species of Phellinus were known to harmful fungi causing white pocket rot and severe plant disease such as canker or heartrot in living trees in the West, but some species have been used to traditional medicines in the Orient for a long time. In this study the partial D1-D2 nucleotide sequences of 28S ribosomal DNA from 13 Phellinus strains were determined and compared with the sequences of 21 strains obtained from GenBank database. According to the neighbor-joining(NJ) method comparing the sequence data the phylogenetic tree was constructed. The phylogenetic tree displayed the presence of four groups. Group I includes P. ferreus, P. gilvus and P. johnsonianus, Group II contains P. laevigatus, P. conchatus and P. tremulae, Group III possesses P. linteus, P. weirianus, P. baumii, P. rhabarbarinus and P. igniarius, and Group IV comprises P. pini, P. chrysoloma. P. linteus and P. baumii, which were used mainly in traditional medicine, belong to the same group, but exactly speaking both were split into two different subgroups. To detect P. linteus only, we developed the PCR primer, D12HR. The primer showed the specific amplification of P linteus, which is permitted to medicinal mushroom in the East. The results make a potential to be incorporated in a PCR identification system that could be used for the rapid identification of this species from its related species, P. linteus especially.

Keywords

References

  1. Chi, J. H., Ha, T. M., Kim, Y. H. and Rho, Y. D. 1996. Studies on the main factors affecting the mycelial growth of Phellinus linteus. Kor. J. Mycol. 24: 214-222
  2. Chi, J. H., Ha, T. M. and Kim, Y. H. 1998. Mycelial growth of Phellinus linteus with various sawdusts. Kor. J. Mycol. 26: 56-59
  3. Choi, K. H. 1999. Development of a new synthetic medium composition for the submerged culture of Phellinus linteus. Kor. J. Biotechnol. Bioeng. 14: 167-173
  4. Eriksson, K. E., Blanchette, R. A. and Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components. Springer- Verlag, New York
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  6. Han, S. B., Lee, C. W., Jeon, Y. J., Hong, N. D., Yoo, I.-D., Yan, K. H. and Kim, H. M. 1999. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology 41: 157-164 https://doi.org/10.1016/S0162-3109(98)00063-0
  7. Ikekawa, T., Nakanishi, M., Uehara, N., Chihara, G. and Fukuoka, F. 1968. Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann. 59: 155-157
  8. Kim, H. M., Han, S. B., Oh, G. T., Kim, Y. H., Hong, D. H., Hong, N. D. and Yoo, I. D. 1996. Stimulation of humeral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int. J. Immunopharmacol. 18: 295-303 https://doi.org/10.1016/0192-0561(96)00028-8
  9. Kurtzman, C. P. and Robnett, C. J. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5'end of the large-subunit (26S) ribosomal DNA gene. J. of Clin. Microbiol. 35(5): 1216-1223
  10. Lachance, M. A., Rosa, C. A., Starmer, W. T., Schlag-Edler, B., Baker, J. S. F. and Bowles, J. M. 1998. Metschnikowia continentalis Vat borealis, Metschnikowia continentalis vat continentalis, and Metschnikowia hibisci, new heterothallic haploid yeasts from ephemeral flowers and associated insects. Can. J. Microbiol. 44: 279-288 https://doi.org/10.1139/cjm-44-3-279
  11. Larsen, M. J. and Cobb-Poulle, L. A. 1990. PHELLINUS (Hymenochaetaceae). A survey of the world taxa. Symposis FungoRum 3. Fungiflora, Oslo, Norway. 1-85
  12. Lee, J. H., Cho, S. M., Kim, H. M., Hong, N. D. and Yoo, I. D. I996a. Immunostimulating activity of polysaccharides from mycelia of Phellinus linteus growth under different culture conditions. J. Microbiol. Biotech. 7: 52-55
  13. Lee, J. H., Cho, S. M., Song, K. S., Han, S. B., Kim, H. M., Hong, N. D. and Yoo, I. D. 1996b. Imrnunostirnulating activity and characterization of polysaccharides from mycelium of Phellinus lintcus. J. Microbiol. Biotech. 6: 213-218
  14. Lee, J. H., Cho, S. M., Song, K. S., Hong, N. D. and Yoo, I. D. 1996c. Characterization of carbohydrate-peptide linkage of acidic heteroglycopeptide with immunostimulating activity from mycelium of Phellinus linteus. Chem. Pharm. Bull. 44: 1093-1095
  15. Mannarelli, B. M. and Kuzmann, C. P. 1998. Rapid identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J. Clin. Microbial. 36(6): 1634-1641
  16. Michot, B. and Bachellerie, J. 1987. Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie. 69: 11-23 https://doi.org/10.1016/0300-9084(87)90267-7
  17. Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. P.N.A.S., U.S.A. 76: 5269-5273 https://doi.org/10.1073/pnas.76.10.5269
  18. Oh, G. T., Han, S. B., Kim, H. M., Han, M. W. and Yoo, I. D. 1992. Immunostimulating activity of Phellinus linteus extracts to B-Iymphocyte. Arch. Pharm. Res. 15: 379-381 https://doi.org/10.1007/BF02974118
  19. Pelaez, F., Martinez, M. J. and Martinez, A. T. 1995. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99: 37-42 https://doi.org/10.1016/S0953-7562(09)80313-4
  20. Robinson, Richard M., Rona N. Sturrock, Joanne J. Davidson, Abul K. M. Ekramoddoullah, and Duncan J. Morrison. 2000. Detection of a chitinase-like protein in the roots of Douglas-fir trees infected with Armillaria ostoyae and Phellinus weirii. Tree Physiology 20: 493-502
  21. Roderic D. M. P. and Edward C. H. 1998. Molecular evolution A phylogenetic approch, Blackwell Science Inc. U.S.A., pp. 73-87
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Bio. Eval. 24: 189-204
  23. Sasaki, T., Arai, Y., Ikekewa, T., Chihara, G. and Fukuoka, F. 1971. Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem. Pharm. Bull. 19: 821-826
  24. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, Dodd, P. C., Conner, C. R., Heiner, C. S., Kent, B. H. and Hood, L. E. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321: 674-679 https://doi.org/10.1038/321674a0
  25. Song, C. H., Moon, H. Y. and Ryu, C. H. 1997. Artificial cultivation of Phellinus linteus. Kor. J. Mycol. 25: 130-132
  26. Song, K. S., Cho, S. M., Lee, I. K., Kim, H. M., Han, S. B., Ko, K. S. and Yoo, I. D. 1995. B-Iymphocyte-stimulating polysaccharide from mushroom Phellinus linteus. Chem. Pharm. Bull. 43: 2105-2108 https://doi.org/10.1248/cpb.43.2105
  27. Sturrock, R. N. and Reynolds, G. 1998. A new technique for inoculation of conifer seedling roots with the laminated root rot pathogen Phellinus weirii. Can. J. Plant Pathology 20: 324-330
  28. Takamatsu, S., Hirata, T. and Sato, Y. 1998. Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). Mycoscience 39: 441-453 https://doi.org/10.1007/BF02460905
  29. Torres, R. A., Ganal, M. and Hemleben, V. 1990. GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNA genes. J. Mol. Evol. 30: 170-181 https://doi.org/10.1007/BF02099943
  30. White, T., Bums, J., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, N.Y.
  31. Zhu, H., Qu, F. and Zhu, L. H. 1993. Isolation of genomic DNAs from plants, fungi, and bacteria using benzyl chloride. Nucleic Acids Research 21: 5279-5280 https://doi.org/10.1093/nar/21.22.5279

Cited by

  1. using Specific Primers Generated from Universal Rice Primer (URP) Derived PCR Polymorphic Band vol.30, pp.4, 2002, https://doi.org/10.4489/MYCO.2002.30.4.202
  2. using the Nucleotide Sequences of 18S Ribosomal RNA vol.31, pp.3, 2003, https://doi.org/10.4489/MYCO.2003.31.3.133
  3. vol.33, pp.2, 2005, https://doi.org/10.4489/MYCO.2005.33.2.104
  4. Molecular sequence data of Thecaphora frezii affecting peanut crops in Argentina vol.137, pp.4, 2013, https://doi.org/10.1007/s10658-013-0296-2
  5. CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid vol.13, pp.1, 2018, https://doi.org/10.1080/17429145.2018.1436199