DOI QR코드

DOI QR Code

Ultrastructural Study on the Cleistothecium Development in Aspergillus nidulans

  • Sohn, K.T. (Department of Microbiology, Kangwon National University) ;
  • Yoon, K.S. (Department of Microbiology, Kangwon National University)
  • Published : 2002.09.30

Abstract

Cleistothecial development in Aspergillus nidulans(teleomorph, Emericella nidulans) was examined with the transmission electron microscopy. Cleistothecial initial was a small coiled lump of cells, ca. 6 ${\mu}m$ in diameter, which was consisted of a slightly swollen core with a short "tail" hypha. Initials were wrapped with a loose layer of hyphae. Core cells of cleistothecial initials were broad and multinucleated at first, then formed dikaryotic ascogenous cells, followed by post-meiotic tetra-nucleate or octa-nucleate protoasci and finally mature ascospores. Croziers were formed early during cleistothecium development. The peridial layer of mature cleistothecia was derived from the wrapping hyphae which originally invested the young cleistothecium. Completion of peridial layers development was associated with the depositing of a non-enzyme reactive material around peridial cells. $H\ddot{u}lle$ cell formation during the cleistothecial development appeared to be somewhat coordinated with the developmental stages of cleistothecium.

Keywords

References

  1. Alexopoulos, C. J., Mims, C. W. and Blackwell, M. 1994. Phylum Ascomycota. Pp 294-322. In: Introdutory Mycology. 4th Ed. John Wiley. New York
  2. Benjamin, C. R. 1955. Ascocarp of Aspergillus and Penicillium. Mycologia 47: 669-687 https://doi.org/10.2307/3755578
  3. Bozzola, J. J. and Russell, L. D. 1992. Specimen preparation for transmission electron microscopy. Pp 14-37. In: Electron Microscopy. Jones and Bartlett Publisher. Boston
  4. Brown, M. F. and Brotzman, H. G. 1976. Procedures for obtaining sectional views of fungal fructifications by scanning electron microscopy. Can. J. Microbiol. 22: 1252-1257
  5. Champe, S. P. and Simon, L. D. 1992. Cellular differentiation and tissue formation in the fungus Aspergillus nidulans. Pp 63-91. In: Rossomando, E. F. and Alexander, S. Eds. Morphogenesis: An Analysis of the Development of Biological Structure. Marcel Dekker Inc. New York
  6. Champe, S. P. and Simon, L. D. Nagle, D. L. and Yager, N. 1994. Sexual sporulation. In: Martinelli, S. D. and Kinghorn, J. R. Eds. Aspergillus: Progress in Industrial Microbiology 29: 429-454. Elsevier Science
  7. Clutterbuck A. J. 1974. Aspergillus nidulans. Pp 447-510. In: King R. C. Ed. Handbook of genetics. Plenum Press. New York
  8. Digby, S. and Goos, R. D. 1987. Morphology, development and taxonomy of Loramyces. Mycologia 79: 821-831 https://doi.org/10.2307/3807683
  9. Egel-Mitani, M., Olson, L. W. and Egel, R. 1982. Meiosis in Aspergillus nidulans: Another example for lacking synaptonemal complexes in the abscence of crossover interference. Hereditas 97: 179-187
  10. Goh, T.-K. and Hanlin, R. T. 1994. Ascomal development inMelanospora zamiae. Mycologia 86: 357-370 https://doi.org/10.2307/3760566
  11. Han, K-H., Han, K-Y., Yu, J.-H., Chae, K-S., Jahng, K-Y. and Han, D.-M. 2001. The nsdD gene encodes a putative GATAtype transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41: 299-309 https://doi.org/10.1046/j.1365-2958.2001.02472.x
  12. Hanlin, R. T. 1964. Morphology of Hypomyces trichothecoides. Amer. J. Bot. 51: 201-208 https://doi.org/10.2307/2440106
  13. Hanlin, R. T. 1999. The morphology of Cercophora palmicola(Lasiosphaeriaceae). Amer. J. Bot. 86: 780-784 https://doi.org/10.2307/2656699
  14. Hermann, T. E., KUrtz, M. B. and Champe, S. P. 1983. Laccase localized inihiille cells and cleistothecial primordial of Aspergillus nidulans. J. Bacteriol. 154: 955-964
  15. Hoffinann, B., Eckert, S. E., Krappmann, S. and Braus, G. H. 2001. Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetic's 157: 141-147
  16. Jensen, J. D. 1983. The development of Diaporthe phaseolorum var. sojae in culture. Mycologia 75: 1075-1091
  17. Koehn, R. D. 1971. Laboratory culture and ascocarp development of Podosordaria leporina. Mycologia 63: 446-458
  18. Kuehn, H. H. 1955a. Observations on Gyrnnoascaceae. I. Myxotricum uncinatum and a new species of Myxotrichum. Mycologia 47: 533-545
  19. Kwon-Chung, K J. 1973. Studies on Emmonsiella capsulata I. Heterothallism and development of the ascocarp. Mycologia 65: 109-121
  20. Kwon, K-J. and Raper, K B. 1967. Sexuality and cultural characteristics of Aspergillus heterothallicus. Amer. J. Bot. 54: 36-48 https://doi.org/10.2307/2440885
  21. Malloch, D. and Cain, R. F. 1970. Five new genera in the new family Pseudeurotiaceae. Can. J. Bot. 48: 1815-1825 https://doi.org/10.1139/b70-267
  22. Moore-Landecker, E. 1975. Effect of cultural conditions on apothecial morphogenesis in Pyronema domesticum. Can. J. Bot. 53: 2759-2769 https://doi.org/10.1139/b75-304
  23. Olsen, L. W., Eden, U, Egel-Mitani, M. and Egel, R. 1978. Asynaptic meiosis in fission yeast? Hereditas 89: 189-199
  24. Raper, K B. and Fennell, D. I. 1965. The genus Aspergillus. Williams and Wilkins, Baltimore
  25. Snow, R. 1979. Maximum liklihood estimation of linkage and interference from tetrad data. Genetics 92: 231-245
  26. Strickland, W. L. 1958. An analysis of interference in Aspergillus nidulans. Proc. R. Soc. B 149: 82-101 https://doi.org/10.1098/rspb.1958.0053
  27. Trail, F. and Common, R. 2000. Perithecia1 development by Gibberella zeae: a light microscopy study. Mycologia 92: 130-138 https://doi.org/10.2307/3761457
  28. Turian, G. 1978. Sexual morphogenesis in the ascomycetes. Pp 315-333. In Smith, J. E. and Berry, D. R. Eds. The filamentous fungi. Vol. 3. Developmental Mycology. John Wiley and Sons. New York
  29. Kuehn, H. H. 1955b. Observations on Gymnoascaceae. II. Two new species of Myxotrichum. Mycologia. 47: 878-890

Cited by

  1. An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation vol.104, pp.19, 2007, https://doi.org/10.1073/pnas.0702108104
  2. Sexual Development vol.37, pp.3, 2009, https://doi.org/10.4489/MYCO.2009.37.3.171
  3. LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity vol.6, pp.12, 2010, https://doi.org/10.1371/journal.pgen.1001226
  4. species vol.36, pp.1, 2012, https://doi.org/10.1111/j.1574-6976.2011.00308.x
  5. LAMMER Kinase LkhA Plays Multiple Roles in the Vegetative Growth and Asexual and Sexual Development of Aspergillus nidulans vol.8, pp.3, 2013, https://doi.org/10.1371/journal.pone.0058762
  6. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans vol.50, pp.4, 2003, https://doi.org/10.1046/j.1365-2958.2003.03800.x
  7. FlbD, a Myb Transcription Factor of Aspergillus nidulans, Is Uniquely Involved in both Asexual and Sexual Differentiation vol.11, pp.9, 2012, https://doi.org/10.1128/EC.00101-12
  8. Molecular and Morphological Data Support the Existence of a Sexual Cycle in Species of the Genus Paracoccidioides vol.12, pp.3, 2012, https://doi.org/10.1128/EC.05052-11
  9. A fungal reproductive unit from the Lower Devonian Rhynie chert (Aberdeenshire, Scotland) that demonstrates an unusual hyphal investment pattern vol.51, pp.2, 2015, https://doi.org/10.1144/sjg2014-026
  10. Transcription Factor Repressor of Sexual Development Inhibits Sexual Development Under Low-Carbon Conditions and in Submersed Culture vol.169, pp.2, 2004, https://doi.org/10.1534/genetics.104.030767
  11. vol.182, pp.3, 2009, https://doi.org/10.1534/genetics.109.101667
  12. vol.193, pp.4, 2013, https://doi.org/10.1534/genetics.112.147546
  13. vol.197, pp.1, 2014, https://doi.org/10.1534/genetics.114.161430
  14. Nature Abhors a Vacuum: Highly Diverse Mechanisms Enable Spoilage Fungi to Disperse, Survive, and Propagate in Commercially Processed and Preserved Foods vol.18, pp.1, 2018, https://doi.org/10.1111/1541-4337.12403