Laser Ultrasonic Inspection of Environmental Barrier Coatings

  • Murray, T.W. (Department of Aerospace and Mechaical Engineering 110 Cummington Street Boston University) ;
  • Balogun, O. (Department of Aerospace and Mechaical Engineering 110 Cummington Street Boston University)
  • 발행 : 2002.12.30

초록

The mechanical properties of mullite $(3Al_2O_3\;2SiO_2)$ environmental barrier coatings are determined using a laser-based ultrasonic system. The waveforms generated by a laser source in mullite coatings in the $1-20{\mu}m$ thickness range are evaluated theoretically using the integral transform technique. It is shown that the laser source generated the two lowest order SAW modes in these systems. Experimental waveforms are generated using a 600ps pulsed Nd:YAG microchip laser and detected using a stabilized Michelson interferometer. The dispersion curves for the generated modes are extracted from the experimental data and the mechanical properties of the coatings are obtained by minimizing the error between the measured and calculated velocity values. The waveforms generated in mullite coatings agree well with theory and laser-based ultrasonics is shown to provide an effective tool for the nondestructive evaluation of ceramic coatings.

키워드

참고문헌

  1. Alleyne, D., and Cawley, P. (1991) A two-dimensional Fourier transform method for the measurement of propagating multimode signals, J. Acoust. Soc. Am. 89 (3), pp. 1159
  2. Cheng, A., Murray, T. W., and Achenbach, J. D. (2001) Simulation of laser generated ultrasonic waves in layered plates, J. Acoust. Soc. Am. 110, (2) pp. 848
  3. Cheng, J., Wu, L., Zhang, S. (1994), Thermoelastic response of pulsed photothermal deformation of thin plates, J. Appl. Phys. 76 (2), pp. 716
  4. Cho, H., Ogawa, S., Yamanaka, K., and Takemoto, M. (1998) Property evaluation of vapor deposited TiN film by the analysis of elastic waves, JSME Int. J. 41(3), pp. 439
  5. Davis, S. J., Edwards, C., Taylor, G. S. and Palmer, S. B. (1993) Laser-Generated Ultrasound: its properties, mechanisms, and multifarious applications, J. Phys. D. 26(3), pp. 329-348
  6. Duggal, A. R., Rogers, J. A. and Nelson, K. A. (1992) Real-time optical characterization of surface acoustic modes of polyimide thin-film coatings, J. Appl. Phys. 72(7), pp. 2823
  7. Farnell, G. W. and Adler, A. L. (1972) Elastic wave propagation in thin layers, in: Eds. Physical Acoustics, Principles and Methods, W. P. Mason Vol. 9, edited by Academic, NY
  8. Hutchins, D. A. (1986) Mechanisms of pulsed photoacoustic generation, Can. J. Phys. 64, pp. 1247-1264
  9. Ledbetter, H., Kim, S., Balzar, D., Crudele, S., and Kriven, W. (1998) Elastic Properties of Mullite, J. Am. Ceram. Soc. 81(4), pp. 1025-1028
  10. McDonald, F. A. (1990) On the precursor in laser-generated ultrasound in metals, Appl. Phys. Lett. 56, pp. 230
  11. Monchalin, J. P., Neron, C., Bussiere, J. F., Bouchard, P., Padioleau, C., Heon, R., Choquet, M., Aussel, J. D., G. Durou, and Nilson, G. (1998) Laser-ultrasonics: From the laboratory to the shop floor, Adv. Perform. Mater. 5 (1-2), pp. 7-23 https://doi.org/10.1023/A:1008644903553
  12. Murray, T.W., Krishnaswamy, S., and Achenbach, J.D. (1999) Laser generation of ultrasound in films and coatings, Appl. Phys. Lett., 74(23), pp. 3561
  13. Pecorari C., Lawrence, C. W., Roberts, S. G., and Briggs,G.A.D., (2000) Quantitative evaluation of surface damage in brittle materials by acoustic microscopy, Phil. Mag. A 80(11), pp. 2695
  14. Pecorari, C. (2001) Attenuation and dispersion of rayleigh waves propagating on a cracked surface: an effective field approach, Ultrasonics 38, pp. 754-760
  15. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1986) Numerical Recipes, Cambridge University Press, NY
  16. Rogers, J.A. (2000) Optical Generation and Characterization of Acoustic waves in Thin Films: Fundamentals and Applications, Annu. Rev. Mater. Sci. 30, pp. 117-157 https://doi.org/10.1146/annurev.matsci.30.1.117
  17. Sanderson, T., Ume, c., and Jarzynski, J. (1997) Laser generated ultrasound: a thermoelastic analysis of the source, Ultrasonics 35, pp. 115-124
  18. Schneider, D., allendorf, H., Schwartz, T. (1995) Non-destructive evaluation of the mechanical behavior of TiN-coated steels by laser induced ultrasonic waves, Appl. Phys. A 61, pp. 277-284
  19. Schneider, D., Hammer, R., and Jurisch, M. (1999) Nondestructive testing of damage layers in GaAs wafers by surface acoustic waves, Semicond. Sci. and Technol. 14, pp. 93-98
  20. Scruby, C. E. and Drain, L. E. (1990) Laser Ultrasonics, Techniques and Applications, Adam Hilger, N.Y.
  21. Shen, Y. and Hess, P. (1997) Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer, J. Appl. Phys. 82(10), pp. 4758
  22. Spicer, J. B., McKie, A. D. W., and Wagner, J.W. (1990) Quantitative theory for laser ultrasonic waves in a thin plate, Appl. Phys. Lett. 57(18), pp. 1882
  23. Spicer, J.B. (1991) Laser Ultrasonics in Structures: Comprehensive Modeling Supporting Experiment, Ph.D. Thesis, Hopkins University
  24. Thomsen, C., Grahn, H. T., Maris, H. J., and Tauc, J. (1986) Surface generation and detec- tion of phonons by picosecond light pulses, Phys. Rev. B 34(6), pp. 4129