DOI QR코드

DOI QR Code

The characteristics of the passively Q-switched Nd:YAG laser output energy with the initial absorbing effect of Cr4+:YAG absorber

수동 큐스위칭 Nd:YAG 레이저에서 포화흡수체 Cr4+:YAG의 초기 광흡수 효과와 출력 특성

  • Published : 2002.08.01

Abstract

To understand the characteristics of the passively Q-switched Nd:YAG laser output energy with $Cr^{4+}$:YAG saturable absorbers, the transmissions of $Cr^{4+}$:YAG and the inversion population densities of Nd:YAG at the onset of Q-switch were experimentally analysed. The measured transmissions at the onset of Q-switch were 0.70$\pm$0.02 and 0.62$\pm$0.02 for the 0.48 and 0.38 of initial transmission, respectively. It means that the initial transmission loss of $Cr^{4+}$:YAG absorber is reduced in a low Q-state due to the initial absorbing effect of $Cr^{4+}$:YAG. In pumping stage, $Cr^{4+}$:YAG has absorbing processes due to the fluorescence and amplified spontaneous emissions of the Nd:YAG even if there is no laser oscillation. The minimum population inversion densities for Qswitch were approximately 3.7${\times}{10^{17}}$ and 4.0${\times}{10^{17}}$ $cm^{-3}$, respectively. At the beginning of Q-switch, the number density of $Cr^{4+}$ions in the ground state of $Cr^{4+}$:YAG was approximately 1.4${\times}{10^{17}}$ $cm^{-3}$ and the ratio of the ground to the excited state of absorbing $Cr^{4+}$ions was 0.44 both. The modified theoretical output energies with the initial absorbing effect were 18 and 18.5 mJ. The measured output energies were 17$\pm$1 and 18$\pm$1.5 mJ, respectively. The quantum extraction efficiencies of Q-switch were 0.32 both. The theoretical Q-switched output results with the initial absorbing effect of the saturable absorber are a good agreement with the experimental results.

초기투과도 0.48과 0.38인 포화흡수체 $Cr^{4+}$: YAG를 사용한 수동 큐스위칭 Nd:YAG 공진기에서 포화흡수의 초기 광흡수 효과로 낮은 Q-상태에서 나타나는 포화흡수체의 투과 광손실 변화와 더불어 레이저 매질의 펌핑된 밀도반전 상태를 분석하였다. 포화흡수체의 초기 광흡수로 수동 큐스위칭 열림동작때 나타나는 포화흡수체의 투과도는 각각 0.70$\pm$0.01과 0.62$\pm$0.01이었다. 이는 큐스위칭 레이저 공진기의 초기 광손실이 간소함을 의미한다. 큐스위칭 열림동작 시점에서 측정된 두 $Cr^{4+}$:YAG의 기저상태 $Cr^{4+}$ 밀도수는 약 1.4${\times}{10^{17}}$$cm^{-3}$이고 기저상태에 대한 여기상태의 $Cr^{4+}$이온밀도수의 비는 약 44%이었다. 또, 큐스위칭 펄스 발생을 위해 펌핑된 최소 반전밀도수는 각각 3.6${\times}{10^{17}}$과 3.9${\times}{10^{17}}$ $cm^{-3}$이고 양자추출효율은 두 경우 모두 약 0.32였다. 낮은 Q-상태에서 나타나는 포화흡수체의 광흡수 효과를 고려한 수동 큐스위칭 레이저 출력에너지의 수정 이론값은 각각 18과 18.5 mJ로 측정된 실험값 약 17$\pm$1과 18$\pm$1.5mJ과 잘 일치함을 보였다.

Keywords

References

  1. Y. S. Choi, “Saturation characteristics of Cr4+:YAG crystals and dye films for passive Q-switches,” Appl. Opt. vol. 40, pp. 5417-5422, 2001. https://doi.org/10.1364/AO.40.005417
  2. 최영수, 전용근, 김재기, "포화흡수체 Cr4+:YAG와 유기염료 박막의 포화특성 분석," 한국광학회지, 제12권, pp. 98-102, 2001
  3. 정태문, 김광석, 문희종, 이종훈, 김철중, 이종민, "Cr4+:YAG 포화흡수체를 이용한 레이저 다이오드 뒷면 여기 Nd:YAG 레이저의 들뜸 효율 및 Q-swiching 특성 연구," 한국광학회지, 제9권, pp. 231-235, 1998.
  4. A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped Neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Sel. Top. Quantum Electron., 3, pp. 45-52, 1997. https://doi.org/10.1109/2944.585813
  5. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron., 31, pp. 1738-1741, 1995. https://doi.org/10.1109/3.466043
  6. P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D: Appl. Phys., 27, pp. 1118-1120, 1994. https://doi.org/10.1088/0022-3727/27/6/006
  7. Y. Shimony, Z. Burshtein, A. B. Baranga, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr^{4+}:YAG saturable absorbers,” IEEE J. Quantum Electron., 32, pp. 305-310, 1996. https://doi.org/10.1109/3.481878
  8. Y. Shimony, Y. Kalisky, and B. Chai, “Quantitative studies of Cr^{4+}:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater., 4, pp. 547-551, 1995. https://doi.org/10.1016/0925-3467(94)00127-8
  9. J. Dong, P. Deng, Y Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passive Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt., 40, pp. 4303-4307, 2001. https://doi.org/10.1364/AO.40.004303
  10. Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO_4-Cr^{4+}:YAG laser,” IEEE J. Quantum Electron., 37, pp. 580-586, 2001. https://doi.org/10.1109/3.914408
  11. Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, and P. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt., 36, pp. 2468-2472, 1997. https://doi.org/10.1364/AO.36.002468
  12. G. Xiao and M. Bass, “Additional experimental confirmation of the predictions of a model to optimize passively Qswitched lasers,” IEEE J. Quantum Electron., 34, pp. 1142-1143, 1998. https://doi.org/10.1109/3.687856
  13. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron., 33, pp. 41-44, 1997. https://doi.org/10.1109/3.554875
  14. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), Chap. 8.
  15. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr^{4+} ions several garnet host crystals,” IEEE J. Quantum Electron., 34, pp. 292-299, 1998. https://doi.org/10.1109/3.658716
  16. G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of in yttrium aluminum garnet,” IEEE J. Quantum Electron., 35, pp. 1086-1091, 1999. https://doi.org/10.1109/3.772180
  17. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 mm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett., 61, pp. 2958-2960, 1992. https://doi.org/10.1063/1.108030
  18. 고해석, 전용근, "Cr^{4+}:YAG 결정과 유기염료 박막의 포화흡수 특성에 관한 연구," 새물리, 제39권, pp. 113-117, 1999.
  19. Y. Kalisky, A. B. Barabga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr^{4+} doped garnets: their properties as non-linear absorbers,” Opt. Mater., 6, pp. 275-280, 1996. https://doi.org/10.1016/S0925-3467(96)00053-5
  20. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Qswitched lasers,” IEEE J. Quantum Electron., 33, pp. 2286-2294, 1997. https://doi.org/10.1109/3.644112
  21. John J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron., 31, pp. 1890-1901, 1995. https://doi.org/10.1109/3.469267
  22. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Simu;taneous mode locking in a diode-pumped passively Q-switched Nd:YVO_4 laser with a GaAs saturable absorber,” IEEE J. Quantum Electron., 37, pp. 462-468, 2001. https://doi.org/10.1109/3.910458
  23. F. D. Patel and R. J. Bleach, “New formalism for the analysis of passively Q-switched laser systems,” IEEE J. Quantum Electron., 37, pp. 707-715, 2001. https://doi.org/10.1109/3.918585
  24. J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron., 35, pp. 1724-1730, 1999. https://doi.org/10.1109/3.798098
  25. W. Xie, Y. L. Lam, Y. C. Chan, S. C. Tam, J. Gu, F. Zhou, H. Yang, and G. Zhao, “Fluorescence fedback control of an active Q-switched diode-pumped Nd:YVO4 laser,” Appl. Opt., 39, pp. 978-981, 2000. https://doi.org/10.1364/AO.39.000978
  26. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 103-110, Chap. 3.
  27. O. Svelto, Principles of Lasers, 4th ed. (Plenum Press, New York, 1998), Chap. 8.
  28. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron., 35, pp. 1912-1918, 1999. https://doi.org/10.1109/3.806608