다층 포토닉 밴드갭 구조를 이용한 소형의 광대역 저지 여파기 설계

Design of a Compact and Wide Bandstop Filter using a Multilayered Photonic Bandgap Structure

  • 서재옥 (亞洲大學校 電子工學部) ;
  • 박성대 (電子部品硏究院 高周波材料硏究센터) ;
  • 김진양 (亞洲大學校 電子工學部) ;
  • 이해영 (亞洲大學校 電子工學部)
  • Seo, Jae-Ok (Department of Electronics Engineering, Ajou University) ;
  • Park, Seong-Dae (High Frequency Material Research Center, Korea Electronics Technology Institute(KETI)) ;
  • Kim, Jin-Yang (Department of Electronics Engineering, Ajou University) ;
  • Lee, Hai-Young (Department of Electronics Engineering, Ajou University)
  • 발행 : 2002.11.01

초록

본 논문에서는 마이크로스트립 전송선로의 유전체 기판(substrate) 내에 삽입된 EGP(Elevated Ground Plane)와 비아를 이용하는 소형의 새로운 포토닉 밴드갭(PBG:Photonic Bandgap) 구조를 제안였하고, 세라믹 기판에 적용된 최적구조를 설계하였다. 해석 결과, 제안된 새로운 PBG 구조는 기존의 평면 PBG 구조에 비해서 크기가 52.5 % 축소되었고 대역폭은 45 % 증가하였다. 그리고 접지면 식각 다층 PBG 구조에 비해서는 크기가 32 % 감소하였고 첨예도(sharpness)가 향상되었으며 차단주파수 이상에서 40 GHz까지 전력손실이 8 dB 이상 개선되었다. 따라서 본 논문에서 제안된 PBG 구조는 대역 저지 또는 저역통과 여파기로 사용할 수 있으며, 이러한 여파기 특성은 경박 단소화된 마이크로파 대역 집적회로나 모듈 개발에 효과적으로 활용될 수 있으리라 기대된다.

In this paper, we proposed novel photonic bandgap(PBG) structure using EGP(Elevated Ground Plane) and via in ceramic substrate of microstrip line. From analysis result, the proposed PBG structure is reduced 52.5% at size and increased 45 % at bandwidth compared to typical planar PBG structure. It is also reduced 32 % at size and improved more than 8 dB at power loss compared to typical multilayer DGS(Defected Ground Structure). The proposed PBG structure also can be used bandstop and lowpass filter and it will be useful for small microwave integrated circuit and module development.

키워드

참고문헌

  1. E. Yablanovich, 'Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett., vol. 58, No. 20, pp. 2059-2062, May, 1987 https://doi.org/10.1103/PhysRevLett.58.2059
  2. M. P. Kesler, J. G. Maloney, and B. L. Shirley, 'Antenna design with the use of photonic bandgap material as all dielectric planar reflectors,' Microw. Opt. Tech. Lett., vol. 11, No. 4, pp. 169-174, Mar. 1996 https://doi.org/10.1002/(SICI)1098-2760(199603)11:4<169::AID-MOP1>3.0.CO;2-I
  3. T. J. Ellis and G. M. Rebeiz, 'MM-wave tapered slot antennas on micromashined photonic bandgap dielectrics,' IEEE MTT-S Int. Microwave Symp. Dig., pp. 1157-1160, June 1996 https://doi.org/10.1109/MWSYM.1996.511235
  4. V. Radisic, Y. Qian, and T. Itoh, 'Broadband power amplifier using dielectric photonic bandgap structure,' IEEE Microwave Guided Wave Lett., vol. 8, No. 4, pp. 13-14, Jan. 1998 https://doi.org/10.1109/75.650973
  5. Jinho Yoon, and Chulhun Seo, 'Improvement of Broadband Feedforward Amplifier Using Photonic Bandgap,' IEEE Microwave and Wireless Components Lett., vol. 11, No. 11, pp. 450-452, Nov. 2001 https://doi.org/10.1109/7260.966038
  6. Yasushi Horri and Makoto Tsutsumi, 'Harmonic Control by Photonic Bandgap on Microstrip Patch Antenna,' IEEE Microwave and Guided Wave Lett., vol. 9, No. 1, pp. 13-15, Jan. 1999 https://doi.org/10.1109/75.752109
  7. F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, 'A Uniplanar Compact Photonic-Bandgap(UC-PBG) Structure and Its Applications for Microwave Circuits,' IEEE Trans. On Microwave Theory and Techniques, vol. 47, No. 8, pp. 1509-1514, Aug. 1999 https://doi.org/10.1109/22.780402
  8. B. Lenoir, D. Baillargeat, S. Verdeyme, and P. Guillon, 'Finite Element Method for Rigorous Design of Microwave Devices using Photonic Band Gap Structure,' IEEE MTT-S Dig. vol. 2, pp. 1061-1064, June. 1998 https://doi.org/10.1109/MWSYM.1998.705176
  9. T. Y. Yun, K. Chang, 'Uniplanar One-Dimensional Photonic-Bandgap Structures and Resonators,' IEEE Transaction on Microwave Theory and Techniques, vol. 49, No. 3, pp. 549-553, Mar. 2001 https://doi.org/10.1109/22.910561
  10. V. Radisic, Y. Qian, R. Coccioli, T. Itho, 'Novel 2-D Photonic Bandgap Structure for Microstrip Lines,' IEEE Microwave and Guided Wave Lett., vol. 8, No. 2, pp. 69-71, Feb. 1998 https://doi.org/10.1109/75.658644
  11. L. Zhu, H. Bu, K. Wu, 'Unified CAD model of Microstrip Line with Backside Aperture for Multilayer Integrated Circuit,' IEEE MTT-S Int. Microwave Symp. Dig., pp. 981-984, June 2000 https://doi.org/10.1109/MWSYM.2000.863521
  12. I. Rumsey, M. Piket-May, P. Keith Kelly, 'Photonic Bandgap Structures Used as Filters in Microstrip Circuits,' IEEE Microwave and Guided Wave Lett., vol. 8, No. 10, pp. 336-338, Oct. 1998 https://doi.org/10.1109/75.735413
  13. T. Kim, C. Seo, 'A Novel Photonic Bandgap Structure for Low-Pass Filter of Wide Stopband,' IEEE Microwave and Guided Wave Lett., vol. 10, pp. 13-15, Jan. 2000 https://doi.org/10.1109/75.842072
  14. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, '3D Metallo-Dielectric Photonic Crystals with Strong, Capacitive Coupling between Metallic Islands,' Phys. Rev. Lett., vol. 80, No. 13, pp. 2829-2832, March, 1998 https://doi.org/10.1103/PhysRevLett.80.2829