DOI QR코드

DOI QR Code

마그네트론 스퍼터링에 의해 제작한 Gallium-doped ZnO 박막에 있어서 잔류 H2O 분압의 영향

The Effect of Residual H2Pressure on Gallium-doped ZnO Films Deposited by Magnetron Sputtering

  • 송풍근 (아오야마 가꾸인 대학 이공학부 화학과) ;
  • 권용준 (부산대학교 무기재료공학과) ;
  • 차재민 (부산대학교 무기재료공학과) ;
  • 이병철 (부산대학교 무기재료공학과) ;
  • 류봉기 (부산대학교 무기재료공학과) ;
  • 김광호 (부산대학교 무기재료공학과)
  • Song, Pung-Keun (Department of Chemistry, College of Science and Engineering, Aoyama Gakuin University) ;
  • Kwon, Young-Jun (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Cha, Jae-Min (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Lee, Byung-Chul (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Ryu, Bong-Ki (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (Department of Inorganic Materials Engineering, Pusan National University)
  • 발행 : 2002.01.01

초록

Ga을 치환 고용시킨 ZnO(GZO) 박막을 GZO 세라믹 타켓을 사용하여 직류 마그네트론 스퍼터법에 의해 기판온도(RT, 400${\circ}C$), 잔류 $H_2O$ 분압(PH2O; 1.61${\times}10^{-4}∼2.2{\times}10^{-3}$ Pa), $H_2$ 가스 첨가(8.5%), 캐소드의 자장강도(250, 1000G)등의 다양한 조건하에서 제작했다. 기판 가열 없이 100% Ar를 사용한 경우, $P_{H_2O}$가 1.61${\times}10^{-4}$ Pa에서 2.2${\times}10^{-3}$ Pa로 증가 했을 때, 박막의 결정립 크기는 24 nm에서 3 nm로 감소했으며, 비저항은 3.0${\times}10^{-3}$에서 3.1${\times}10^{-2}{\Omega}㎝$ 로 크게 증가함을 보였다. 그러나, 8.5% $H_2$를 Ar 가스에 혼합하여 제막한 결과, GZO 박막의 전기적 특성은 $P_{H_2O}$의 증가에도 불구하고 변화 없이 나타났다. 또한 캐소드의 자장강도를 250G에서 1000G로 증가시킨 경우, GZO 박막의 결정성 및 전기적 특성은 $P_{H_2O}$와 상관없이 크게 향상되었으며, 이것은 플라즈마 임피던스의 감소에 따른 박막 손상의 감소에 기인한다고 생각된다.

Gallium doped Zinc Oxide(GZO) films were deposited by dc magnetron sputtering using a GZO ceramic target at various conditions such as substrate temperature (RT, 400), residual water pressure ($P_{H_2O}$; 1.61${\times}10^{-4}∼2.2{\times}10^{-3}$ Pa), introduction of $H_2$ gas (8.5%) and different magnetic field strengths(250, 1000G). GZO films deposited without substrate heating showed clear degradation in film crystallinity and electrical properties with increasing $P_{H_2O}$. The resistivity increased from 3.0${\times}10^{-3}$ to 3.1${\times}10^{-2}{\Omega}㎝$ and the grain size of the films decreased from 24 to 3 nm when PH2O was increased from 1.61${\times}10^{-4}$ to 2.2${\times}10^{-3}$ Pa. However, degradation in electrical properties with increasing $P_{H_2O}$ was not observed for the films deposited with introduction of 8.5% $H_2$. When magnetic field strength of the cathode increased from 250G to 1000G, crystallinity and electrical properties of GZO films improved remarkably about all the $P_{H_2O}$. This result could be attributed to the decrease in film damage caused by the decrease in plasma impedance.

키워드

참고문헌

  1. R. Latz, K. Michael and M. Scherer, 'High Conducting Large Area Indium Tin Oxide Electrodes for Displays Prepared by DC Magnetron Sputtering,' Jpn. J. Appl. Phys., 30 [2A] L149-51 (1991) https://doi.org/10.1143/JJAP.30.L149
  2. S. Takaki, Y. Shigesato, H. Harada, H. Kojima, T. Oyama and T. Haranou, 'Prepartion of Highly Conducting ITO Electrodes on Color Filters by Highly Dense Plasma- Assisted EB Evaporation,' SID 90 DIGEST, 76-9 (1990)
  3. J.I. Lee and S.K. Choi, 'Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sndoped $In_2O_3$ Films,' J. Kor. Ceram. Soc., 37 [7] 686-92 (2000)
  4. Z. C. Jin, I. Harmberg and C. G. Granqvist, 'Optical Properties of Sputter deposited ZnO:A1 Thin Films,' J. Appl. Phys., 64 5117-31 (1988) https://doi.org/10.1063/1.342419
  5. W. M. Duncan, J. W. Lee, R. J. Matyi and H. Y. Liu, 'Photoluminescence and X my Properties of Heteroepitaxial Gallium Arsenide on Silicon,' J. Appl. Phys., 64 2161-64 (1986)
  6. T. Minami, T. Miyata and T. Yamamoto, 'Stability of Transparent Conducting Oxide Films for Use at High Temperatures,' J. Vac. Sci. Technol., A17 [4] 1822-26 (1999)
  7. P. K. Song, Y. Shigesato, M. Kamei and I. Yasui, 'Structural and Electrical Properties of Gallium Doped Zinc Oxide Films,' J. Kor. Ceram. Soc., 5 [4] 404-08 (1999)
  8. J. Cho, J. B. Nah, M. S. Oh, K. H. Yoon, H. J. Jung and W. K. Choi, 'Enhancement of Photoluminescence and Electrical Properties of Ga Doped ZnO Thin Films Grown on $\alpha$-$Al_2O_3$(000l) Single Crystal Substrate by RF Magnetron Sputtering through Rapid Thermal Aimealing,' J. Kor Ceram. Soc., 10 [3] 335-40 (2001)
  9. J. Hu and R. G. Gordon, 'Atmospheric Pressure Chemical Vapor Deposition of Gallium Doped Zinc Oxide Thin Films from Diethyl Zinc, Water and Tnethyl Gallium,' J. Appl. Phys., 72 [11] 5381-92 (1992) https://doi.org/10.1063/1.351977
  10. J. Ma, F. Ji, H. L. Ma and S. Y. Li, 'Prepartion and Prop- erties of Transparent Conducting Zinc Oxide and Alumium- doped Zinc Oxide Films Prepared by Evaporating Method,' Solar Energy Mwterials and Solar Cells, 60 [4] 341-48 (2000) https://doi.org/10.1016/S0927-0248(99)00076-8
  11. R. Wendt, K. Ellmer and K. Wiesemaim, 'Thermal Power at a Substrate During Zn0:A1 Thin Film Deposition in a Planar Magnetron Sputtehng,' J. Appl. Phys., 82 2115-22 (1997) https://doi.org/10.1063/1.366092
  12. H. P. Klug and L. E. Alexander, 'X-ray Diffaction Procedures for Polycrystalline and Amorphous Material,' 2nd Ed. by Chap.9 (Wiley, New York, 1974)
  13. P. K. Song, Y. Shigesato, I. Yasui, C. W. Ow Yang and D. C. Paine, 'Study on Crystallinity of Tin doped Indium Oxide Films Deposited by DC Magnetron Sputtering,' Jpn. J. Appl. Phys., 37 [4A] 1870-76 (1998) https://doi.org/10.1143/JJAP.37.1870
  14. P. K. Song, M. Watanabe, M. Kon, A. Mitsui and Y. Shige sato, 'Electrical and Optical Properties of Gallium Doped Zinc Oxide Films Deposited by DC Magnetron Sputtering,' Thin Solid Films, 411 82-6 (2002) https://doi.org/10.1016/S0040-6090(02)00192-X
  15. I. Hamberg, 'Indium Tin Oxide Thin Films: Basic Optical Properties and Applications to Energy Effcient Windows,' Chap.8, pp. 170-93 in Ph. D. Thesis, Chalmers University of Technology, Goteborg, Sweden, 1984
  16. P. K. Song, Y. Shigesato, M. Kamei and I. Yasui, 'Electrical and Structural Properties of Tin doped Indium Oxide Films Deposited by DC Magnetron Sputtering at Room Temperature,' Jpn. J. Appl Phys., 38 [5A] 2921-27 (1999) https://doi.org/10.1143/JJAP.38.2921