DOI QR코드

DOI QR Code

DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties

  • 김광식 (한국화학연구원 화학소재연구부) ;
  • 류호진 (한국화학연구원 화학소재연구부) ;
  • 장건익 (충북대학교 재료공학과)
  • Kim, Kwang-Sik (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Ho-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jang, Gun-Eik (Department of Materials Science and Engineering, Chungbuk National University)
  • 발행 : 2002.01.01

초록

본 연구에서는 DC bias가 인가된 유도결합형 플라즈마 열선 화학기상증착법을 이용하여 580$^{\circ}C$의 저온에서 탄소나노튜브를 수직 배향시켰다. 성장된 탄소나노튜브의 기판으로는 강화유리 위에 촉매층으로 Ni과 전도층으로 Cr을 300/200 ${\AA}$(Ni/Cr) 증착된 것으로 R-F magnetron sputtering을 이용하여 제작하였다. 성장 시 RF power와 DC bias power는 150W와 80W이며 텅스텐 필라멘트 power는 7∼8 A로 인가하였다. 성장된 탄소나노튜브는 속이 비어 있는 다중벽으로 이루어 졌으며 성장된 탄소나노튜브 끝단에는 금속 촉매로 보이는 Ni이 존재하는 것을 알 수 있었다. 탄소나노튜브는 흑연화도가 우수하며 그에 따라 탄소나노튜브의 전계 방출 특성도 우수하게 평가되었다. 성장된 탄소나노튜브의 구동 전압은 약 3 V/${\mu}m$이었다.

In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

키워드

참고문헌

  1. S. Iijima, 'Helical Microtubles of Graphitic Carbon,' Nature, 354, 56-57 (1991) https://doi.org/10.1038/354056a0
  2. T. Baird, J. R. Frayer and B. Grant, 'Structure of Fibrous Carbon,' Nature, 233, 329-330 (1971)
  3. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, 'Synthesis of Large Arrays of Well-aligned Carbon Nanotubes on Glass,' Science, 282, 1105-1107 (1998) https://doi.org/10.1126/science.282.5391.1105
  4. S. Demura, T. Nagasako, J. Yotani, T. Shimojo and Y Saito, 'Carbon Nanotube FED Element,' SID' 98 Digest, 1052-1055 (1998)
  5. Y H. Kim, S. H. Sim, Y S. Kim and J. K. Jang, 'Electron Structure of Carbon Nanotubes,' J. KIEEME, 13(5), 13-21 (2000)
  6. J. H. Han, B-S Moon, W. S. Young, J-B. Yoo and C-Y Park, 'Growth Characteristics of Carbon Nanotubes by Plasma Enhanced Hot Filament Chemical Vapor Deposition,' Surf. Coat. Tech., 131, 93-97 (2000) https://doi.org/10.1016/S0257-8972(00)00766-0
  7. Q. Zhang, S. F. Yoon, J. Abn, B. Gan, Rush and M. B. Yu, 'Carbon Films with High Density Nanotubes Produced Using Microwave Plasma Assited CVD,' J. Phys. Chem. Solids, 1179-1183 (2000)
  8. E. Frackowiak and F. Beguin, 'Carbon Materials for the Electrochemical Storage of Energy in Capacitors,' Carbon, 39(6), 937-950 (2001) https://doi.org/10.1016/S0008-6223(00)00183-4
  9. S. M. Lee, K. S. Park, Y C. Choi, Y S. Park, J. M. Bok, D. J. Bae, K. S. Nahm, Y G. Choi, S. C. Yu, N-G. Kim, T. Frauenheim and Y H. Lee, 'Hydrogen Adsorption and Storage in Carbon Nanotubes,' Synthetic Metals, 113(3), 209-216 (2000) https://doi.org/10.1016/S0379-6779(99)00275-1
  10. H. K. Yu, W-K. Choi, H. Ryu and B. Lee, 'Preparation of Carbon Nanomaterials by Thermal CVD and their Hydrogen Storage Properties,' J. Kor. Ceram. Soc., 38(10), 867-870 (2001)
  11. J. M. Bonard, J. P. Salvetat, T. Stokli, W. A. Heer, L. Forro nd A. Chatelain, 'Field Emission from Single Wall Carbon Nanotube Films,' Appl. Phys. Lett., 73, 918-920 (1998) https://doi.org/10.1063/1.122037
  12. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, 'Field Emissiom from Carbon Nanotubes for Displays,' Diamond Relat. Mater., 9, 1184-1189 (2000) https://doi.org/10.1016/S0925-9635(99)00266-6
  13. S. J. Chung, S. H. Lim and J. Jang, 'Field Emission from Carbon Nanotubes Grown by Layer-by-layer Deposition Method Using Plasma Chemical Vapor Deposition,' Thin Solid Films., 383, 73-77 (2001) https://doi.org/10.1016/S0040-6090(00)01617-5
  14. J-M. Bonard, H. Kind, T. S. Ckli and L-O. Nilsson, 'Field Emission from Carbon Nanotubes: The First Five Years,' Solid State Electronics., 45, 893-914 (2001) https://doi.org/10.1016/S0038-1101(00)00213-6
  15. L. Alvarez, T. Guillard, J. L. Sauvajol, G. Flamant and D. Laplaze, 'Solar Production of Single-wall Carbon Nanotubes: Growth Mechanisms Studied by Electron Microscopy and Raman Spectroscopy,' Appl. Phys. Lett. A: Materials Science and Processing, 70(2), 169-173 (2000) https://doi.org/10.1007/s003390050029
  16. M. Lamy De La Chapelle, C. Stephan, T. P. Nguyen, S. Lefrant, C. Journet, P. Bernier, L. Alvarez, D. Laplaze, E. Munoz, A. Benito, W. K. Maser, M. T. Martinez, G. F. De La Fuente, T. Guillard and G. Flamant, 'Raman Characterization of Single Walled Carbon Nanotubes and PMMAnanotubes Composites,' Synthetic Metals, 103(1-3), 2510-2512 (1999) https://doi.org/10.1016/S0379-6779(98)01080-7
  17. K. S. Kim, H. Ryu and G-E. Jang, 'A Study on The Growth of Carbon Nanotubes Using ICPCVD and their Field Emission Properties,' J. KIEEME, 14(10), 850-854 (2001)
  18. R. Schetesser, R. Cllazo, C. Bower, O. Zhou and Z. Sitar, 'Energy Distribution of Field Emitted Electrons from Carbon Nanotubes,' Diam. Relat Mater., 9, 1201-1204 (2000) https://doi.org/10.1016/S0925-9635(99)00277-0
  19. W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, 'Large Current Density from Carbon Nanotube Field Emitters,' Appl. Phys. Lett., 75(6), 873-875 (1999) https://doi.org/10.1063/1.124541