DOI QR코드

DOI QR Code

콘크리트 혼합재의 석회반응성에 관하여

A Study on the Lime Reactivity of Concrete Admixtures

  • Chang, Pok-Kie (Department of Materials Science and Engineering, Chonnam National University) ;
  • Yoon, Chung-Han (Department of Mineral and Energy Engineering, Chonnam National University)
  • 발행 : 2002.01.01

초록

고로슬래그와 플라이 애쉬의 석회 반응성을 수열조건 하에서 각각 고찰하였다. 수열반응 조건은 CaO-$SiO_2$ 비(C/S), 수열온도($140{\circ}C$$180{\circ}C$)및 반응시간(20~60시간)이었다. 수열반응성은 각 수경성 재료에 함유된 $SiO_2$와 (순수)석회 사이의 반응률 및 반응 시편의 압축강도를 측정하여 조사하였다. 그리고 본 반응성 고찰을 위하여 기공률 측정 및 XRD 분석도 수행하였다. 압축강도 물성은 시편의 기공률 및 CaO-$SiO_2$ 반응성과 연계하여 고찰하였으며, XRD 분석으로 수열반응 중 C/S가 변화함을 확인할 수 있었다. 고로슬래그 중의 $SiO_2$는 플라이 애쉬에 함유된 $SiO_2$ 보다 석회반응성이 우수하여 전자의 경우 시편은 훨씬 높은 강도를 나타내었다. 수열반응 온도 $180{\circ}C$ 및 40시간의 조건에서 고로슬래그는 최고 강도 $807kg/cm^2$을 나타냈으며, 플라이 애쉬의 경우 최고 강도는 $397kg/cm^2$ 이었다.

This paper addresses the hydrothermal reactivity of blast furnace slag and fly ash with lime, respectively. The test conditions were CaO-to-$SiO_2$ ratio (C/S), autoclaving temperature ($140{\circ}C$ and $180{\circ}C$) and time (20 to 60h). The study was carried out in terms of the hydrothermal reactivity between $SiO_2$ contained in each hydraulic material and (pure) lime and the compressive strength of autoclaved specimens. Porosity measurement and the XRD analysis were also made in order to ascertain the hydraulicity of the siliceous materials. Compressive strength of the specimens was interpreted in terms of porosity and the reactivity of CaO and $SiO_2$. And the XRD analysis showed the C/S change of the hydrates in the course of autoclaving process. $SiO_2$ in the blast furnace slag was more reactive with CaO than that in the fly ash and consequently the blast furnace slag specimens resulted in much higher compressive strength. A maximum compressive strength of $807kg/cm^2$ was obtained for the blast furnace slag at the autoclaving condition of $180{\circ}C$ and 40 h, while only $397kg/cm^2$ was maximally to achieve with fly ash.

키워드

참고문헌

  1. K. Sato, T. Hashida, H. Takahashi and N. Yamasaki, 'Strengthening of Hydrothermal Hot-pressed Concrete Waste by the Addition of Slag,' J. Ceram. Soc. Jpn., 105 [3] 262-64 (1997) https://doi.org/10.2109/jcersj.105.262
  2. C. Shi, 'Strength, Pore Structure and Permeability of Alkali-activated Slag Mortars,' Cem. Concr. Res., 26 [12] 1789-99 (1996) https://doi.org/10.1016/S0008-8846(96)00174-3
  3. J. T. Song, J. Y. Kim, H. K. Choi and S. H. Byun, 'Prop-erties of Blended Cement Using Ground Blast-furnace Slag with Low Blaine Value(in Kor.),' 37 [1] 70-6 (2000)
  4. J. S. Rho, D. S. Kim, S. S. Hong, G. G. Lim and S. S. Lim, 'Fluidity and Setting Properties of Cement Paste by Adding of Fluoroanhydrite and Fly Ash(in Kor.),' 34 [12] 1261-67 (1997)
  5. S. J. Jung, W. K. Bang and C. E. Kim, 'The Effects of $Na_2SO_4$ on the Hydration of Fly Ash Blended Cement((in Kor.),' 35 [11] 1227-32 (1998)
  6. S. Kahyaoglu, 'Brown Coal Fly Ash and Blast Fumace Slag Sand as Raw Materials for the Lime-sand Industry(in Ger.),' Master thesis, RWTH Aachen, 1989
  7. N. Kohler, 'Global Energetic Budget of Aerated Concrete,' pp. 13-26 in 'Autoclaved Aerated Concrete, Moisture and Properties,' Ed. by Wittmann, F.H., Elsevier, Amsterdam, 1983
  8. G. O. Asserson, 'Hydrothermal Reaktion Between $Ca(OH)_2$ and Silicic-acid Containing Materials at $120-220^{\circ}C$ (in Ger.),' Zement-Kalk-Gips, 12 [10] 537-44 (1961)
  9. T. Holzapfel and K. Miskiewicz, 'Brown Coal Fly Ash as Raw Material for the Preparation of Hydrothermally Hard-ened Building Elements(in Ger.),' Zement-Kalk-Gips, 117 [3] 111-24 (1993)
  10. W. Hinz, 'Silicates: Principles of the Silicate Science and Silicate Technique(in Ger.),' 2 363-74, Verlag $f\ddot ur$ Bau-wesen, Berlin, 1971
  11. DIN 106, 'Lime sand stone'
  12. R. Kondo, 'Kinetic Study on Hydrothermal Reaction Between Lime and Silica,' pp. 92-7 in '1st Intern. Symp. on Autoclaved Calcium Silicate Building Products,' publicated by the Soc. of Chem. Indust., London, 1967