Optimising the Extraction of Bacteria, Heterotrophic Protists and Diatoms, and Estimating Their Abundance and Biomass from Intertidal Sandy Sediments

  • Lee, Won-Je (School of Biological Sciences, University of Sydney) ;
  • Patterson, David J. (School of Biological Sciences, University of Sydney)
  • Published : 2002.06.01

Abstract

The study of microbial communities in sediments is impaired by the lack of reliable extraction methods. This study reports on the efficiency of recovery of a method for extracting bacteria, protists and diatoms from sandy sediments using a modified decant/fix method. The best extractions were achieved after fixation with a microtubule stabilising fixative and subsequent sonication for 80 seconds. We estimate that the efficiencies of recovery of bacteria and mixed heterotrophic flagellates were $96.4{\pm}3.5\%$ and $96.9{\pm}4.6\%$, respectively. Diatoms were recovered with an efficiency of 38-83% and varied considerably from species to species. This study suggests that the decant/fix method is effective in extracting small cells such as bacteria and heterotrophic flagellates, and that the efficiency of recovery of the method varies due to cell length and different types of organisms. When microbial carbon biomass had been underestimated by up to 32%, with much of that relating to larger cells such as microalgae and ciliates. We note that the corrected abundances may be still a subset of the total numbers present.

Keywords

References

  1. Alongi, D.M., 1986. Quantitative estimates of benthic protozoa intropical marine systems using silica gel: a comparison of methods. Estuar. Coast. Shelf. Sci., 23: 443-450 https://doi.org/10.1016/0272-7714(86)90002-8
  2. Alongi, D.M., 1991. Flagellates of benthic communities; charac-teristics and methods of study. In: The biology of free-livingheterotrophic flagellates, edited by Patterson, D.J. and J.Larsen, Clarendon Press, Oxford, 45: 57-75
  3. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-columnmicrobes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263 https://doi.org/10.3354/meps010257
  4. Bak, R.P.M. and G. Nieuwland, 1989. Seasonal fluctuations inbenthic protozoan populations at different depths in marinesediments. Neth. J. Sea Res., 24: 37-44 https://doi.org/10.1016/0077-7579(89)90168-3
  5. Dietrich, D. and H. Arndt, 2000. Biomass partitioning of benthicmicrobes in a Baltic inlet: relationships between bacteria,algae, heterotrophic flagellates and ciliates. Mar. Biol., 136:309-322 https://doi.org/10.1007/s002270050689
  6. Ellery, W.N. and M.H. Schleyer, 1984. Comparison of homogeni-zation and ultrasonication as techniques in extracting attachedsedimentary bacteria. Mar. Ecot Prog. Ser., 15: 247-250 https://doi.org/10.3354/meps015247
  7. Epstein, S.S., 1995. Simultaneous enumeration of protozoa andmicrometazoa from marine sandy sediments. Aquat. Microh.Ecot., 9:219-227 https://doi.org/10.3354/ame009219
  8. Epstein, S.S., 1997a. Microbial food webs in marine sediments. I.Trophic interactions and grazing rates in two tidal flat com-munities. Microb. Ecol., 34: 188-198 https://doi.org/10.1007/s002489900048
  9. Epstein, S.S., 1997b. Microbial food webs in marine sediments.II. Seasonal changes in trophic interactions in a sandy tidal flat community. Microb. Ecot., 34: 199-209 https://doi.org/10.1007/s002489900049
  10. Epstein, S.S., D. Alexander, K-. Cosman, A. Dompe, S. Gallagher,J. Jarsobski, E. Laning, R. Martinez, G. Panasik, C. Peluso, R.Runde and E. Timmer, 1997. Enumeration ofsandy sedimentbacteria: Are the counts quantitative or relative? Mar. Ecot.Pros. Ser., 151: 11-16 https://doi.org/10.3354/meps151011
  11. Epstein, S.S. and J. Rossel, 1995. Eumeration of sandy sedimentbacteria: search for optimal protocol. Mar. Ecot. Prog. Ser.,117:289-298 https://doi.org/10.3354/meps117289
  12. Fenchel, T., 1967. The ecology of marine microbenthos I. Thequantitative importance of ciliates as compared with meta-zoans in various types of sediments. Ophetia, 4: 121-137
  13. Fenchel, T., 1968a. The ecology ofmanne microbenthos II. The food ofmarine benthic ciliates. Ophelia, 5: 73-121 https://doi.org/10.1080/00785326.1968.10409626
  14. Fenchel, T., 1968b. The ecology of marine microbenthos III. Thereproductive potential of ciliates. Ophelia, 5: 123-136 https://doi.org/10.1080/00785326.1968.10409627
  15. Fenchel, T., 1969. The ecology of mahne microbenthos IV. Struc-ture and function of the benthic ecosystem, its chemical andphysical factors and the microfauna communities with specialreference to the ciliated protozoa. Ophetia, 6: 1-182
  16. Fenchel, T., 1970. Studies on the decomposition of organic detri-tus derived from the turtle grass Thalassia testudinium. Lim-nol. Oceanogr., 15: 14-2 https://doi.org/10.4319/lo.1970.15.1.0014
  17. Fenchel, T., 1987. Ecology of protozoa: the biology of free-living phag-otrophic protists. Science Tech Publishers, Medison, 197 pp
  18. Galehouse, J.S., 1971. Sedimentation analysis. In: Procedures in sedimentary petrology, edited by Carver, R.E., Wiley-Inter-science, New York, PP. 69-94
  19. Hondeveld, B.J.M., G. Nieuwland, F.C. Duyl and R.P.M. Bak,1994. Temporal and spatial variations in heterotrophic nanoflagel-lates abundance in North Sea sediments. Mar. Ecot. Prog. Ser.,109:235-243 https://doi.org/10.3354/meps109235
  20. Ingram, R.L., 1971. Sieve Analysis. In: Procedures in sedimentarypetrology, edited by Carver, R.E., Wiley-Interscience, NewYork, PP. 49-67
  21. Kemp, P.F., 1990. The fate of benthic bacterial production. Rev.Aquati. Sci., 2: 109-124
  22. Kirchman, D.L., 1994. The uptake of morganic nutrients by het-erotrophic bacteria. Microb. Ecol., 28: 255-271 https://doi.org/10.1007/BF00166816
  23. Lackey, J.B., 1961. Bottom sampling and environmental niches.LimnoI. Oceanogr., 6: 271-279 https://doi.org/10.4319/lo.1961.6.3.0271
  24. Larsen, J. and D.J. Patterson, 1990. Some Hagellates (Protista)from tropical marine sediments. J. Nat. Hist., 24: 801-937 https://doi.org/10.1080/00222939000770571
  25. Lee, W.J. and D.J. Patterson, 1998. Diversity and geographic dis-tribution of free-living heterotrophic flagellates - analysis by Primer. Protist, 149: 229-244 https://doi.org/10.1016/S1434-4610(98)70031-8
  26. Lee, W.J. and D.J. Patterson, 2002. Abundance and biomass ofheterotrophic flagellates, and factors eontrolling their abun-dance and distribution in sediments of Botany Bay. Microb.Ecol. 43: 467-481 https://doi.org/10.1007/s00248-002-2000-5
  27. Mare, M.F., 1942. A study of a marine benthic community withspecial reference to the microorganisms. J. Mar. Biol. Ass.U.K., 25: 517-574 https://doi.org/10.1017/S0025315400055132
  28. McCammon, R.B., 1962. Efficiencies o fpercentile measures fordescribing the mean size and sorting of sedimentary particles.J. Geol., 70: 453-465 https://doi.org/10.1086/626836
  29. Patterson, D.J., J. Larsen and J.O. Corless, 1989. The euology of heterotrophic flagellates and ciliates living in marine sedi-ments. Prog. Protistol., 3: 185-277
  30. Patterson, D.J. and W.J. Lee, 2000. Geographic distribution anddiversity of free-living heterotrophic flagellates. In: Theflagellates: unity, diversity and evolution, edited by Lead-beater, B.S.C. and J.C. Green, Taylor and Francis, London and New York, 49: 269-287
  31. Round, F.E., R.M. Crawford and D.G. Mann, 1990. The Diatoms.Biology and Morphology of the Genera. Cambridge Univer-sity Press, Cambridge, 747 pp
  32. Sherr, E. and B. Sherr, 1988. Role of microbes in pelagic foodwebs: A revised concept. Limnol. Oceanogr., 33: 1225-1227 https://doi.org/10.4319/lo.1988.33.5.1225
  33. Starink, M., M.J. Bar-Gilissen, R.P.M. Bak and T.E. Cappenberg,1994. Quantitative centrifugation to extract benthic protozoafrom freshwaters sediments. Appl. Environ. Microbiol., 60:167-173
  34. Starink, M., M.J. Bar-Gilissen, R.P.M. Bak and T.E. Cappenberg,1996a. Bactehvory by heterotrophic nanoflagellates and bac-terial production in sediments of a freshwater littoral system.Limnol. Oceanogr., 41: 62-69 https://doi.org/10.4319/lo.1996.41.1.0062
  35. Starink, M., M.J. Bar-Gilissen, R.P.M. Bak and T.E. Cappenberg,1996b. Seasonal and spatial variation in heterotrophic nanoflagel-late and bacteria abundances in sediments of a freshwater lit-toral zone, Limnol. Oceanogr., 41: 234-242 https://doi.org/10.4319/lo.1996.41.2.0234
  36. Stein, J.R., 1973. Handbook of Phycological Methods: Culturemethods and growth measurements. Cambridge UniversityPress, London, 448
  37. Tso, S.F. and G.L. Taghon, 1997. Enumeration of protozoa andbacteria in muddy sediment. Microb. Ecol., 33: 144-148 https://doi.org/10.1007/s002489900016
  38. Uhlig, G., 1964. Eine einfache Methode zur Extraktion der vag-ilen, mesopsammalen Mikrofauna. Helgol. Wiss. Meeresunters.,11:178-185 https://doi.org/10.1007/BF01612370
  39. Webb, M.G., 1956. An ecological study of brackish water ciliates.J.Anim.Ecol., 25: 148-175 https://doi.org/10.2307/1856
  40. Weerakoon, N.D., J.D.I. Harper, A.G.B. Simpson and D.J. Patter-son, 1999. Centrin in the groove: immunolocalisation of cen-trin and microtubules in the putatively primitive protist Chitomastix cuspidata (Retortmonadida). Protoplasma, 210:75-84 https://doi.org/10.1007/BF01314957
  41. Winer, B.J., D.R. Brown, D.R. and K.M. Michels, 1991. Statisti-cal principles in experimental design (3rd ed). McGraw-Hill,New York, 1057 pp
  42. Yamamoto, N. and G. Lopez, 1985. Bacterial abundance in rela-tion to surface area and organic content of marine sediments.J. Exp. Mar. Biol. Ecol., 90: 209-220 https://doi.org/10.1016/0022-0981(85)90167-4
  43. Zweifel, U.L. and A. Hagstrom, 1995. Total counts of marine bac-teria include a large fraction of non-nucleoid-containing bac-teria (ghosts). Appl. Environ. Microbiol., 61: 2180-2185