Implementation of A Robust Force Controller Using Stable NAC(Natural Admittance Control) Method

안정된 고유 어드미턴스 제어방식을 이용한 강인한 힘 제어기의 구현

  • Kim, Seung-Woo (Soonchunhyang University, Division of Information Technology Engineering)
  • 김승우 (順天鄕大學校 情報技術工學部)
  • Published : 2002.11.01

Abstract

An NAC(Natural Admittance Control) system design is presented for interaction controller that achieves high-performance and guarantees stability. The NAC can be classified as a particular flavor of impedance control similar to control schemes that have velocity compensator and force compensator. The NAC significantly improves the response characteristics when Coulomb friction is presented in One-link Robot System and guarantees stability when robot contacts with environment. Pragmatic rules for NAC synthesis are derived. It shows method to choose a target impedance for realizable force compensator. Important parameters are found experimentally. It is demonstrated, by the experimental result, that NAC algorithm is successful in rejecting Coulomb friction through velocity compensator and guarantees stability through force compensator. We implement an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the natural admittance controller to the One-link robot system, and show the good performance on desired force control in case of contacting with arbitrary environment.

로봇 제어에서 로봇 핸드가 환경과 접촉하는 상황에서는 위치제어와 힘 제어를 동시에 필요로 한다. 그것을 구현하는 알고리즘 즉, 순응성 제어, 힘 제어, 하이브리드 힘/위치 제어, 임피던스 제어 등의 많은 제어기들이 발표되어 왔으나, 위치/힘 제어가 통합구조로 구성되어 있는 임피던스 제어기가 최근에 많은 연구들을 통하여 가장 효율적인 알고리즘으로 증명되고 있다. 고유 어드미턴스 제어기는 임피던스 제어기가 단순 변형된 것으로 속도 보상기와 힘 보상기로 구성되어 있으며, 로봇 핸드의 속도와 힘제어를 통합 구조로 수행한다. 어드미턴스 제어 방식은 이미 발표된 여러 논문에서 제어구조상의 장점이 확인된 바 있다. 본 논문에서는 고유 어드미턴스 제어기의 게인 파라미터 값을 시스템의 안정성을 확보하면서 결정하는 게인 튜닝 알고리즘을 설계하고, 그것을 실험용으로 제작한 1축 로봇 시스템에 적용하여 임의의 강성을 갖는 환경과의 접촉시에 발생 할 수 있는, 환경의 반작용 힘에 대해서 제어모터가 성공적으로 상호 작용하는 제어성을 실험한다. 또한, 1축 로봇 시스템에 쿨롱 마찰력을 가하여 로봇제어에 방해요소가 되는 외란의 영향에도 불구하고 고유 어드미턴스 제어기가 강인하게 대처함으로서 제어모터가 원하는 위치나 속도로 제어되는 것을 실험결과를 통하여 확인한다.

Keywords

References

  1. R. Andeson, M. Spong, 'Hybrid impedance control of robotic manipulators', In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1073-1080, 1987
  2. M.H. Raibert, J.J. Craig, 'Hybrid position/force control of manipulators', Transactions of the ASME : Journal of Dynamic Systems, Measurement, and Control, 102:126-133, June 1981
  3. R.J. Anderson, 'Stable robot force control laws for arbitrary environments', In Proceedings of the ASME, pp. 13-23, December 1989
  4. Canudas Dewit K.J. Astorm and K. Braun, 'Adaptive friction compensation in robot manipulation: Low - velocity', Proc. of International Conference on robotics and automation pp. 1352-1357, 1994
  5. N. Hogan 'Impedance control : An approach to manipulation: Part iii-applications' Journal of Dynamic systems Measurement and control, vol 107 pp. 17-24, 1996 https://doi.org/10.1115/1.3140701
  6. M.E. Dohring, 'Impedance control of redundant manipulation : theory and experiments'. Case Western Reserve University, 1997
  7. Glosser. G. D, 'The implementation of Natural Admittance Controller on a Robotic Manipulator', MS Thesis, Department of Systems Engineering, Case Western Reserve University, Jan. 1993
  8. Schimmels, J.M, Peskin, M. A, 'Admittance Matrix Design for Force-Guided Assembly', IEEE Trans. Robotics Automat, vol. 8, pp. 213-217, April 1992 https://doi.org/10.1109/70.134275
  9. Homayyoun Seraji, Richard Colbaugh 'Force Tracking in Impedance Control', The International Journal of Robotics Research. Vol. 16, No. 1, pp. 97-117, February 1997 https://doi.org/10.1177/027836499701600107
  10. Ciro Natale, Bruno Siliano, 'Spatial Impedance Control of Redundant Manipulators', In Proceedings of the 1999 IEEE International Conference on Robotics and Automation Detroit, Michigan. May 1999 https://doi.org/10.1109/ROBOT.1999.770368
  11. Chien-Chern Cheah, Danwei Wang, 'Learning Impedance Control for Robotic Manipulators', IEEE Transactions on Robotics and Automation, Vol. 14, No. 3, June 1998 https://doi.org/10.1109/70.678454
  12. J.E. Colgate, The Control of Dynamically Interacting Systems. Ph.D. thesis, Department of Mechanical Engineering, MIT, August 1988
  13. A.M. Khan, 'Experimental Investigations of theadmittance function of a robotic manipulator,' Master's thesis, Case Western Reserve University, Department of Electrical Engineering and Applied Physics, May 1992
  14. Seul Jung, T. C. Hsia, 'Neural Network Impedance Force Control of Robot Manipulator,' IEEE Transactions on Industrial Electronics, Vol, 45, No. 3, June 1998 https://doi.org/10.1109/41.679003
  15. Dong Sun and Yunhui Liu, 'Modeling and Impedance Control of a two-Manipulator System handling a Flexible Beam,' Transactions of the ASME Vol. 119, pp. 736-742. December 1997