CORDIC 알고리듬에 기반 한 OFDM 시스템용 8192-Point FFT 프로세서

A 8192-Point FFT Processor Based on the CORDIC Algorithm for OFDM System

  • 발행 : 2002.08.01

초록

본 논문에서 OFDM (Orthogonal Frequency-Division Multiplexing) 시스템용 2K/4K/8K-point 복소 FFT (Fast Fourier Transform) 프로세서의 구조와 그 구현방법을 제안한다. 제안하는 프로세서의 구조는 긴 길이의 DFT를 짧은 길이의 다차원 DFT로 분할하기 위하여 쿨리-투키 알고리듬에 기반 한다. 전치 메모리, 셔플 메모리, 메모리 합성 방법은 다차원 변환을 위한 메모리의 능률적 조작을 위해 사용한다. Booth 알고리듬과 CORDIC (COordinate Rotation DIgital Computer) 프로세서는 각 차원에서 트위들 팩터 곱셈을 위해 사용한다. 또한, CORDIC 프로세서에는 트위들 팩터를 저장하기 위해 필요한 ROM의 사용을 막기 위해 트위들 팩터 발생 방법을 제안한다. 전체 2K/4K/8K FFT 프로세서는 600,000 게이트를 사용하며, 1.8V, 0.18${\mu}m$ CMOS를 이용해 구현한다. 제안하는 프로세서는 8K-point FFT를 273${\mu}s$마다, 2K-point를 68.26${\mu}s$마다 수행할 수 있으며, SNR은 DVB-T의 OFDM을 위해 충분한 48dB를 넘는다.

This paper presents the architecture and the implementation of a 2K/4K/8K-point complex Fast Fourier Transform(FFT) processor for Orthogonal Frequency-Division Multiplexing (OFDM) system. The architecture is based on the Cooley-Tukey algorithm for decomposing the long DFT into short length multi-dimensional DFTs. The transposition memory, shuffle memory, and memory mergence method are used for the efficient manipulation of data for multi-dimensional transforms. Booth algorithm and the COordinate Rotation DIgital Computer(CORDIC) processor are employed for the twiddle factor multiplications in each dimension. Also, for the CORDIC processor, a new twiddle factor generation method is proposed to obviate the ROM required for storing the twiddle factors. The overall 2K/4K/8K-FFT processor requires 600,000 gates, and it is implemented in 1.8 V, 0.18 ${\mu}m$ CMOS. The processor can perform 8K-point FFT in every 273 ${\mu}s$, 2K-point every 68.26 ${\mu}s$ at 30MHz, and the SNR is over 48dB, which are enough performances for the OFDM in DVB-T.

키워드

참고문헌

  1. R. Lassalle and M. Alard, 'Principles of modulation and channel coding for digital broadcasting for mobile receivers,' EBU Technical Review, No. 224, pp. 168-190, Aug. 1987
  2. W. Y. Zou and Y. Wu, 'COPDM: An Overview,' IEEE Trans. on Broadcasting, vol. 41, No. 1, pp. 1-8, Mar. 1995 https://doi.org/10.1109/11.372015
  3. L. J. D'Luna, W. A. Cook, R. M. Guidash, G. W. Brown, T. J. Tiedwell, J. R. Fischer, and T. Tam, 'An 8 x 8 discrete cosine transform chip with pixel rate clocks,' The 3rd Annual IEEE ASIC Seminar and Exhibit, PP. P7/5.1-P7/5.4, 1990
  4. K. Kim, 'Shuffle memory system,' 13th Int. Symp. on Parallel and Distributed Processing, pp. 268-272, Apr. 1999
  5. Y. H. Hu, 'CORDIC-based VLSI aichitectures for digital signal processing,' IEEE Signal Processing Mag., vol. 9, No. 3, PP. 16-35, July 1992 https://doi.org/10.1109/79.143467
  6. R. Sarmiento, V. D. Armas, J. P. Lopez, J. A. Montiel-Nelson, and A. Nunez, 'A CORDIC processor for FFT computation and its imple-mentation using gallium arsenide technology,' IEEE Trans. on VLSI Systems, vol. 6, No. 1, pp. 18-30, Mar. 1998 https://doi.org/10.1109/92.661241
  7. A. M. Despain, 'Fourier transform computers using CORDIC iterations,' IEEE Trans. on Computers, vol. C-23, No. 10, pp. 993-1001, Oct. 1974
  8. A. M. Despain, 'Very fast Fourier transform algorithms for hardware implementation,' IEEE Trans. on Computers, vol. C-28, No. 5, pp. 333-341, May 1979 https://doi.org/10.1109/TC.1979.1675363
  9. J. W. Cooley and J. W. Tukey, 'An algorithm for the machine calculation of complex Fourier series,' Mathematics of Computation, vol. 19, No. 90, pp. 297-301, Apr. 1965 https://doi.org/10.2307/2003354
  10. E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, 'A fast single-chip implementation of 8192 complex point FFT,' IEEE Journal of Solid-State Circuits, vol. 30, No. 3, PP. 300-305, Mar. 1995 https://doi.org/10.1109/4.364445
  11. S. H. Park, D. H. Kim, D. S. Han, K. S. Lee,S. J. Park, and J. R. Choi, 'Sequential design of a 8192 complex point FFT in OFDM receiver,' The First IEEE Asia Pacific Conference, pp. 262-265, Aug. 1999
  12. A. V. Oppenheim and R. W. Schafer,Discrete-time Signal Processing, Englewood Cliffs, NJ : Prentice Hall, 1989
  13. S. Winograd, 'On computing the discrete Fourier transform,' Mathematics of Comput-ation, vol. 32, No. 141, pp. 175-199, Jan. 1978 https://doi.org/10.1090/S0025-5718-1978-0468306-4
  14. J. Volder, 'The CORDIC trigonometric computmg technique,' IRE Trans. on Electronic Computers, vol. EC-8, No. 3, pp. 330-334, Sept. 1959
  15. M. Bekooij, J. Huisken, and K. Nowak, 'Numerical accuracy of fast Fourier transforms with CORDIC arithmetic,' Journat of VLSI Sisnal Processing, vol. 25, No. 2, pp. 187-193, June 2000 https://doi.org/10.1023/A:1008179225059
  16. Y. H. Hu, 'The quantization effects of the CORDIC algorithm,' IEEE Trans. on Signal Processing, vol. 40, No. 4, pp. 834-844, Apr. 1992 https://doi.org/10.1109/78.127956
  17. T. Thong and B. Liu, 'Fixed-point fast Fourier tansform error analysis,' IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-24, No. 6, PP. 563-573, Dec. 1976