초록
본 논문에서는 계층적 은닉 마코프 모델을 이용한 히스토그램과 모우멘트 기반의 동영상 장면전환 검출 방법을 제안한다. 제안된 방법은 웨이블릿 변환된 영상의 저주파 부 밴드로부터 히스토그램을 추출하며, 고주파 부 밴드로부터는 방향성 모우멘트를 추출한다. 그리고 수동적으로 분할된 비디오로부터 추출한 히스토그램 차와 모우멘트 차를 관측값으로 사용하여 은닉 마코프 모델을 학습한다. 비디오 분할 과정은 두 단계로 구성되는데, 먼저 히스토그램 기반의 은닉 마코프 모델은 입력된 비디오에 대하여 셧, 컷, 그리고 점진적인 장면전환의 3개의 범주로 분할한다. 그리고 두 번째 단계에서는 모우멘트 기반의 은닉 마코프 모델을 사용하여 점진적인 장면 전환을 더 세밀하게 페이드와 디졸브로 분할한다. 실험결과 제안된 방법은 기존의 경계값 기반의 방법보다 더 효율적으로 동영상의 셧 경계를 분할하였음을 볼 수 있었다.
In this paper, we present a histogram and moment-based vidoe scencd change detection technique using hierarchical Hidden Markov Models(HMMs). The proposed method extracts histograms from a low-frequency subband and moments of edge components from high-frequency subbands of wavelet transformed images. Then each HMM is trained by using histogram difference and directional moment difference, respectively, extracted from manually labeled video. The video segmentation process consists of two steps. A histogram-based HMM is first used to segment the input video sequence into three categories: shot, cut, gradual scene changes. In the second stage, a moment-based HMM is used to further segment the gradual changes into a fade and a dissolve. The experimental results show that the proposed technique is more effective in partitioning video frames than the previous threshold-based methods.