참고문헌
- J. G. Proakis, Digital Communication, 4th ed.New York: McGraw Hill, 2001
- Z. Ding, R. A. Kennedy, B. D. 0. Anderson,and C. R. Johnson, Jr., 'Ill-convergence of Godard blind equalizers in data communicationsystems,' IEEE Trans. Signal Processing, vol.39, no. 9, pp. 1313-1327, Sept. 1991
- Y. Li and Z. Ding, 'Global convergence offractionally-spaced Godard (CMA) adaptiveequalizers,' IEEE Trans. Signal Processing, vol.44, no. 4, pp. 818-826, Apr. 1996 https://doi.org/10.1109/78.492535
- L. Tong, G. Xu, and T. Kailath, 'Blindidentification and equalization based on Second-order statistics: A time domain approach,' IEEETrans. Inform. Theory, vol. 40, no. 2, pp.340-349, Mar. 1994 https://doi.org/10.1109/18.312157
- L. Tong, G. Xu, B. Hassibi, and T. Kailath,'Blind channel identification based on Second-order statistics: A frequency- domainapproach,' IEEE Trans. Inform. Theory, vol. 41,no. 1, pp. 329-334, Jan. 1995 https://doi.org/10.1109/18.370088
- E. Moulines, P. Duhamel, J. F. Cardoso, and S.Mayrargue, 'Subspace methods for the blindidentification of multichannel FIR filter,' IEEETrans Signal Processing, vol. 43, no. 2, pp.516-525, Feb. 1995 https://doi.org/10.1109/78.348133
- K. Abed-Meraim, E. Moulines, and P. Loubaton, 'Prediction error method for second-order blindidentification,' 1EEE Trans. Signal Processing,vol. 45, no. 3, pp. 694-704, Mar. 1997 https://doi.org/10.1109/78.558487
- C. B. Papadias and D. T. M. Slock,'Fractionally spaced equalization of linear polyphase channels and related blind techniquesbased on multichannel linear prediction,' IEEETrans. Signal Processing, vol. 47, no. 3, pp.641-653, Mar. 1999 https://doi.org/10.1109/78.747772
- J. Mannerkoski and D. P. Taylor, 'Blindequalization using least-squares lattice Predic-tion,' IEEE Trans. Signal Processing, vol. 47,no. 3, pp. 630-640, Mar. 1999 https://doi.org/10.1109/78.747771
- J. Mannerkoski, V. Koivunen, and D. P.Taylor, 'Performance bounds for multistepprediction-based blind equalization,' IEEETrans. Signal Processing, vol. 49, no. 1, pp.84-93, Jan. 2001
- D. T. Slock and C. B. Papadias, 'Further results on blind identification and equalization ofmultiple FIR channels,' in Proc. ICASSP, 1995, pp. 1964-1967
- J. Shen and Z. Ding, 'Direct blind MMSEchannel equalization based on second orderstatistics,' IEEE Trans. Signal Processg vol.48, no. 4, pp. 1015-1022, Apr. 2000 https://doi.org/10.1109/78.827535
- X. Li and H. Fan, 'Direct estimation of blindzero-forcing equalizers based on second-orderstatistics,' IEEE Trans. Signal Processing, vol.48, no. 8, pp. 2211-2218, Aug. 2000 https://doi.org/10.1109/78.852002
- S. Haykin, Adaptive Fitter theory, 3id ed.Upper Saddle River, NJ: Prentice-Hall, 1996
- G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: JohnsHopkins Univ. Press, 1996
- J. Endres, S. D. Halfbrd, C. R. Johnson, and G.B. Giannakis, 'Simulated comparisons of blindequalization algorithms for cold startupapplications,' Int. J. Adaptive Contr. SignalProcess., vol. 12, no. 3, pp. 283-301, May 1998 https://doi.org/10.1002/(SICI)1099-1115(199805)12:3<283::AID-ACS479>3.0.CO;2-E
- T. R. Treichler, I. Fijalkow, and C. R. Johnson,'Fractionally spaced equalizers: how long shouldthey be?,' IEEE Signal Processing Mag., vol.13, no. 3, pp. 65-81, May 1996 https://doi.org/10.1109/79.489269
- G. B. Giannakis and S. D. Halford, 'Blind fractionally spaced equalization of noisy FIRchannels: direct and adaptive solutions,' IEEETrans. Sigial Processing, vol. 45, no. 9, pp.2277-2292, Sept. 1997 https://doi.org/10.1109/78.622950
- B. Yang, 'Projection approximation subspacetracking,' IEEE Trans. SignaI Processing, vol.43, no. 1, pp. 95-107, Jan. 1995 https://doi.org/10.1109/78.365290
- P. Common and G. H. Golub, 'Tracking a fewextreme singular values and vectors in signalprocessing,' Proc. IEEE, vol. 78, no. 8, pp.1327-1343, Aug. 1990 https://doi.org/10.1109/5.58320
- D. Gesbert and P. Duhamel, 'Robust blindchannel identification and equalization based onmulti-step predictors,' in Proc. ICASSP, 1997,pp. 3621-3624
- H. Luo and R. Liu, 'Blind eqoalizeis formultipath channels with best equalizationdelay,' in Proc. ICASSP, 1999, pp. 2511-2513
- T. K. Moon and W. C. Stirling, MathematicatMethods and Algorithms for Signal Processing.Upper Saddle River, NJ: Prentice-Hall, 2000
- K. S. Ahn, J. P. Cho, and H. K. Baik,'Multistep prediction-based blind equalizationand effcient adaptive implementation,' Journal of the KICS, vol. 26, no. 6B, pp. 776-783, June2001