일반화된 이진 Bent 시퀀스

Generalized Binary Bent Sequences

  • 길강미 (서울대학교 전기${\cdot}$컴퓨터공학부) ;
  • 노종선 (서울대학교 전기${\cdot}$컴퓨터공학부) ;
  • 신동준 (한양대학교 전자전기컴퓨터공학부)
  • 발행 : 2002.01.01

초록

본 논문에서 Olsen, Scholtz, Welch가 소개한 이진 bent 시퀀스군을 일반화시켜 최적의 상관 특성과 균형 특성을 갖는 일반화된 이진 bent 시퀀스를 생성하였다. 변형된 trace 변환이 정의되고 이로부터 ${F_{2^n}}$에서 중간체 ${F_{2^e}}$로의 선형함수를 사용하였다. 여기서 e|n이다. 만일 e=1이면 새로운 방법은 기존의 이진 bent 시퀀스의 경우와 같아진다. 또한 새로운 방법이 최적의 상관 특성과 균형 특성을 갖는 간단한 이진 시퀀스군을 생성시킨다는 것을 보여주고 몇 가지 예가 주어진다.

In this paper, we generalize the family of binary bent sequences introduced by Olsen, Scholtz and Welch [2] to obtain the generalized binary bent sequences with optimal correlation and balance properties. The modified trace transform is introduced and it enables us to use linear function from ${F_{2^n}}$ to the intermediate field ${F_{2^e}}$, where e|n. If we choose e=1, our method becomes the conventional binary bent sequence case. Also, some examples are given which show that our construction gives the family of simple binary sequences with optimal correlation and balance properties.

키워드

참고문헌

  1. O.S. Rothaus, 'On bent functions,' Joumat of Combinatorial Theory, Series A. vol. 20, pp. 300-305, 1976 https://doi.org/10.1016/0097-3165(76)90024-8
  2. J.D. Olsen, R.A. Scholtz and L.R. Welch, 'Bent-function sequences,' IEEE Trans. Inform. Theory, vol. 28, pp. 858-864, Nov. 1982 https://doi.org/10.1109/TIT.1982.1056589
  3. A. Lempel and M. Cohn, 'Maximal families of bent sequences,' IEEE Trans. Inform. Theory, vol. 28, pp. 865-868, Nov. 1982 https://doi.org/10.1109/TIT.1982.1056590
  4. S.W. Golomb, Shift-Register Sequences, Revised Ed., Aegean Park Press, San Francisco, 1982
  5. R. Lidl and H. Niederreiter, Finite Fields, vol. 20 of Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983
  6. J.S. No and P.V. Kumar, 'A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span,' IEEE Trans. Inform, theory, vol. 35, no. 2, pp.371-379, Mar. 1989 https://doi.org/10.1109/18.32131
  7. J.S. No, 'A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span,' Ph.D. dissertation, Univeisity of Southem California, May, 1988
  8. F.J. McWilliams and N.J.A. Sloane, The theory of Error-Correcting Codes, New York: North-Holland, 1977
  9. L. R. Welch, 'Lower bounds on the maximal cross correlation of signals,' IEEE Trans. Inform. Theory, vol. 20, pp. 396-399, May 1976