DOI QR코드

DOI QR Code

열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures

  • 오진호 (서울대학교 기계항공공학부 대학원) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • 발행 : 2002.08.01

초록

열-기계-전기 하중이 완전 연계된 스마트 구조물의 응력과 변형을 정확히 예측할 수 있는 판 이론을 개발하였다. 두께 방향으로 변위와 온도장은 3차 곡선에 선형 지그재그 장을 중첩하여 구하였다. 횡 수직방향 변형을 고러하기 위해 횡 수직 변위를 두께방향으로, 포물선으로 가정하였다. 전기장은 선형지그재그 형태로 가정하였다. 스마트 구조물의 층에 의존하는 변위장과 온도장의 자유도를 층 사이의 연속조건과, 평판의 위 아래 횡 방향 전단응력이 존재하지 않는다는 조건으로부터, 기준면에 의한 자유도로 나타내었다. 수치 예를 통해 제안된 이론의 정확도와 효율성을 평가하였다. 본 연구에서 제시한 고차 지그재그 이론은 열 환경 하에서 두꺼운 지능 복합재료 평판의 정적, 동적 거동 해석에 사용될 수 있다.

A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

키워드

참고문헌

  1. Crawley, E. F. "Use of Piezoelectric Actuators as Elements of Intelligent Structures," AIAA J., Vol. 25, No. 10, 1987, pp. 1373-1385. https://doi.org/10.2514/3.9792
  2. Ha, S.K. and Keilers, C. and Chang, F. "Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators," AIAA J., Vol. 30, No. 3, 1992, pp. 772-780. https://doi.org/10.2514/3.10984
  3. Mitchell, J. A. and Reddy, J. N. "A Refined Hybrid Plate Theory for Composite Laminates with Piezoelectric Laminate," Int. J. Solids Struct., Vol. 32, No. 16, 1995, pp. 2345-2367. https://doi.org/10.1016/0020-7683(94)00229-P
  4. Saravanos, D.A. and Heyliger, P.R. and Hopkins, D.A. "Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates," Int. J. Solids Struct, Vol. 34, No. 3, 1997, pp 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1
  5. Cho, M. and Parmerter, R.R. " Efficient higher-order composite plate theory for general lamination comfigurations," AIAA J., Vol. 31, 1993, pp. 1299-1306. https://doi.org/10.2514/3.11767
  6. Toledano, A. and Murakami, H. "A Composite Plate Theory for Arbitrary Laminate Configurations," ASME J. of Appl. Mech., Vol. 54, 1987, pp. 181-189. https://doi.org/10.1115/1.3172955
  7. Ali, J.S.M. and Bhaskar, K. and Varadan, T.K. "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates," Composite Structures, Vol. 45, 1999, pp. 227-232. https://doi.org/10.1016/S0263-8223(99)00028-8
  8. Ray, M.C and Bhattacharya, R and Samanta, B "Exact Solutions for Static Analysis of Intelligent Structures," AIAA J., Vol. 31, No. 9, 1993, pp. 1684-1691. https://doi.org/10.2514/3.11831