(Automatic detection of pulmonary nodules in X-ray chest images)

흉부 X선 영상에서의 폐 노쥴 자동 탐지 기법

  • 성원 (충남대학교 컴퓨터공학과) ;
  • 김의정 (공주대학교 컴퓨터교육과) ;
  • 박종원 (충남대학교 정보통신공학과)
  • Published : 2002.09.01

Abstract

Generally, radiologists can fail to detect pulmonary nodules in up to 30%. If an automatic system can inform the radiologists of thelocations of the doubtful nodules in the X-ray chest images, the frequency of mistakenly observed numbers of the nodules can be potentially reduced. This software is using morphological filtering and two feature-extraction techniques. The morphological filtering is the first process, which subsequently adds the operations of erosion and dilation to the original images so that this process can transform the original X-ray chest images into manageable ones. The false-positives are frequently being mistaken as nodules but actually these are not real nodules. The second process is the two feature-extraction techniques which are used to reduce the false-positives. Therefore, this system will make more effective detection of pulmonary nodules by reducing the false-positives when applied to the X-ray chest images which is difficult to get accurate detection.

일반적으로 방사선 의사들(radialogists)이 폐 노쥴(pulmonary nodule)을 탐지하는 데는 실제적으로 30%의 실패율을 가진다고 알려져 있다. 만약 자동화된 시스템이 체스트 영상에서 의심스런 노쥴들의 위치들을 방사선 의사에게 알려줄 수 있다면 잘못 판단되는 노쥴들의 수를 잠재적으로 줄일 수 있다. 우리는 형태학적 필터들 (morphological filters)과 두가지 특징-추출(feature-extraction) 기술들을 포함하는 컴퓨터 자동 처리 시스템을 구현하였다. 본 시스템에서는 첫째로 형태학적 필터(morphological filtering) 처리를 행한다. 이 과정은 원래의 영상에 침식(erosion)과 확장(dilation)을 연이어서 행하는 것으로 처리가 어려운 X선 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차적으로 노쥴로서 컴퓨터에 선택된 의심 부분에 가해주는 특징-추출 테스트로서 이 작용은 노쥴로 감지되었으나 실제로는 노쥴이 아닌 경우인 false-positive 갑지들을 줄이기 위해서 사용된다. 그리하여 본 시스템은 노쥴의 정확한 판독이 어려운 폐의 X선 영상에 적용되어 false-positive들을 효과적으로 줄임으로써 보다 효율적인 폐 노쥴의 탐지를 가능하게 하였다.

Keywords