Increase of Salt and Low Temperature Tolerance by Overexpressing Glutathione S-Transferase (GST) Gene

염분과 저온에 대한 내성증진을 위한 GST 유전자의 과발현

  • Jun Chol Kim (Department of Biology, College of Natural Sciences, Kangwon National University) ;
  • Il Seop Kim (Division of Applied Plant Science, College of Agriculture and Life Sciences, kangwon National University) ;
  • Won Hee Kang (Division of Applied Plant Science, College of Agriculture and Life Sciences, kangwon National University)
  • Published : 2002.09.01

Abstract

Cotton Glutathione S-Transferase (GST: EC 2.5.1.18) was cloned and overexpressed in tobacco (Nicotiana tabacum) plants. Northern blot analysis confirmed the successful transformation of cotton gst gene in tobacco plant. Type I and Type ll transcript patterns were identified in transgenic tobacco plants and only Type I transcripts were discussed in this paper, The activity of GST in the type II transgenic plants was about 1.5-fold higher than those of the wild type and non-expresser by using 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione as the substrate. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type II transgenic plants produced functional GST in the cells. The effects of cotton GST in the seedlings was evaluated by growing the control and transgenic seedlings at $15^{\circ}C$ in the growth chamber in the light. Overexpressors were grown well compared to the control plants (non-expressors). lo test far tolerance to salinity, seeds of Gh-5 overexpressors and the wild type Xanthi seedlings were grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings on 50 and 100 mM NaCl solution. There was no difference in growth rate at 150 and 200mM NaCl concentration.

목화의 Glutathione S-Transferase(GST) cDNA를 cloning한 뒤 담배식물체에서 과발현시킨 뒤 유전자의 기능을 분석하였다. Northern blot 분석으로 목화의 GST 유전자가 성공적으로 담배식물체의 염색체에 도입된 것을 확인하였다 Type I Type II의 전사체들이 인지되었고 이 보고에서는 Type II 전사체들의 역할을 기술하였다. Type II 전사체들을 발현하는 형질전환 식물체들은 야생형 또는 비형질전환체와 비교하였을 때 약 1.5배 이상의 GST 효소활성을 나타내었다. GST 효소의 활성은 1-chloro-2,4-dinitrobenzene (CDNB)와 글루타치온을 기질로 사용하여 측정하였다. 담배식물체에서 목화 GST CDNA의 과발현은 이 유전자가 기능을 갖는 단백질로 번역이 될 수가 있다는 것을 보여준다. 형질전환된 담배 유묘를 저온($15^{\circ}C$)과 광이 있는 상태에서 키워 GST유전자의 역할에 대한 기능을 시험하였다. GST 유전자의 형질 전환체들은 대조구의 유묘들과 비교하여 보았을 때 성장이 좋았다. 소금에 대한 내성 시험에서도 효과를 보였다. 0, 50, 100, 150, and 200 mM NaCl농도에서 생장시험을 하였다. 50, 100 mM NaCl농도에서 GST 형질전환 유묘들은 성장이 대조구에 비하여 유의성을 보였으나 0, 150, 그리고 200mM의 소금농도에서는 성장의 차이를 보이지 않았다.

Keywords

References

  1. Allen, R.D. 1995, Dissection of oxidative stress toler-ance using transgenic plants. Plant Physiol. 107:1-7 https://doi.org/10.1104/pp.107.1.1
  2. Bartling, D., R. Radzio, U. Steiner, and E. Weiler. 1993. A glutathione S-transferase with glutathione-per-oxidase activity from Arabidopsis thaliana: molecular cloning and functional characterization. Eur. J. Bio-chem. 216:579-586 https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
  3. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocy-anate-phenol-chloroform extraction. Anal. Biochem. 162:156-159
  4. Droog, F.N.J., P.J.J. Hooykaas, K.R. Libbenga, and E.J. van der Zaal. 1993. Proteins encoded by an auxin-regulated gene family of tobacco share limited but sig-nificant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Molecular Biol. 21:965-972 https://doi.org/10.1007/BF00023595
  5. Habig, W.H. and W.B. Jakoby. 1981. Assays for differ-entiation of GST. Methods Enzymol. 77:735-740
  6. Horsch, R.B., J.E. Fry, N.J. Hofman, D. Eicholtz, S.G. Rogers, and R.T. Fraley. 1985. A simple and general method for transferring genes into plants. Science 227:119-123
  7. Mannervik, B. and U.H. Danielson. 1988. Glutathione transferases. Structure and catalytic activity. CRC Crit. Rev. Biochem. 23:283-337 https://doi.org/10.3109/10409238809088226
  8. Marrs, K.A. 1996. The functions and regulation of glu-tathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:127-58 https://doi.org/10.1146/annurev.arplant.47.1.127
  9. Marrs, K.A., M.R. Alfenito, A.M. Lloyd, and V. Wal-bot. 1995. A glutathione S-transferase involved in the vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397-400 https://doi.org/10.1038/375397a0
  10. Mozer, T.J., D.C. Tiemeier, and E.G. Jaworksi. 1983. Purification and characterization of corn glutathione S-transferase. Biochem. 22:1068-1072 https://doi.org/10.1021/bi00274a011
  11. Pickett, C.B. and A.Y.H. Lu. 1989. Glutathione S-transferases: gene structure, regulation, and biological function. Annu. Rev. Biochem. 58:743-764 https://doi.org/10.1146/annurev.bi.58.070189.003523
  12. Roxas, P.R., R.K. Smith, E.R. Allen, and R.D. Allen. 1997. Overexpression of glutathione S-transferase/glu-tathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotech. 15:988-991 https://doi.org/10.1038/nbt1097-988
  13. Sambrook, J., E.F. Fritch, and T. Maniatis. 1989 Molecular cloning. Cold spring harbor laboratory press, Cold Spring Harbor, New York
  14. Timmerman, K.P. 1989. Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxification. Physiol. Plant. 77:465-471 https://doi.org/10.1111/j.1399-3054.1989.tb05668.x