DOI QR코드

DOI QR Code

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion

순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측

  • Published : 2002.12.01

Abstract

The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.

1995년에 개정된 현행 ACI 규준식은 콘크리트의 비틀림 저항을 무시하여, 콘크리트와 비틀림 보강근이 비틀림 내력에 미치는 상호영향을 평가할 수 없다. 실험에서는 현행 ACI 규준식이 콘크리트와 비틀림 보강근의 차이에 따라 철근콘크리트 보의 비틀림 내력을 과소/과대 평가하고 있음을 지적하였다. 이 논문에서는 트러스 모델의 힘의 평형조건과 변형의 적합조건을 이용하여 콘크리트의 비틀림 저항을 고려한 비틀림 평가식을 제안하였다. 제안식에서는 현행 규준식의 상수 '2'대신에 $textsc{k}$를 사용하여 비틀림 모멘트에 대한 콘크리트와 비틀림 보강근의 상호영향을 고려하였다. 제안식은 순수비틀림을 받는 총 66개의 철근콘크리트 보의 실험결과와 비교되었다. 제안식은 콘크리트의 압축강도와 비틀림 보강근의 양의 변화에 관계없이 현행 ACI 비틀림 규준식보다 정확하게 실제의 비틀림 모멘트를 예측하였으며, 이 때의 평균값 및 변동계수는 각각 1.1 및 8.5%였다.

Keywords

References

  1. Thomas T. C. Hsu, "Torsion of Structural Concrete-Behavior of Reinforced Concrete Rectangular Members," Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 1968, pp.261-306.
  2. E. Rausch, "Design of Reiriforced Concrete in Torsion," PhD. thesis, Technische Hochschule, Berlin, 1928, 53 pp. (in German).
  3. Thomas T. C. Hsu, "Torsion of Structural Concrete Plane Concrete Rectangular Members," Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 1968, pp.203-238.
  4. J. G. MacGregor and M. G. Ghoneim, "Design for Torsion," ACI Structural Journal, Vol. 92, No.2, Mar.-Apr. 1995, pp.211-218.
  5. ACI Committee 318, "Building Code Requirements for Structural Concrete(318-99) and Commentary (318R-99)," American Concrete Institute, Farmington Hills, Mich., 1999, pp.149-155.
  6. Belarbi, A. and Thomas T. C. Hsu, "Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete," ACI Structural Journal, Vol. 91, No.4, July-Aug. 1994, pp.465-474.
  7. Thomas T. C. Hsu, "Softened Truss Model Theory for Shear and Torsion," ACI Structural Journal, Vol. 85, No. 6, Nov.-Dec. 1988, pp.624-635.
  8. Frank J. Vecchio and Michael P. Collins, "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear," ACI Journal, Proceedings, Vol. 83, No. 2, Mar.-Apr. 1986, pp.219-231.
  9. Michael P. Collins and Denis Mitchell, Prestressed Concrete Structures, Prentice-Hall, Inc., 1991, p.347.
  10. J. R. Robinson and J.M. Demorieux, "Essais de Traction-Compression Sur Models d'ame de Poutreen Beton Arme," IRABA Report, IRABA, June 1968, p.44.
  11. A. Belarbi and Thomas T. C. Hsu, "Constitutive Laws of Softened Concrete in Biaxial Tensioncompression," ACI Structural Journal, Vol. 92, No.5, 1995, pp.562-573.
  12. Khaldoun N. Rahal and Michael P. Collins, "Simple Model for Predicting Torsional Strength of Reinforced and Prestressed Concrete Sections," ACI Structural Journal, Vol. 93, No. 6, Nov.-Dec 1996, pp.658-666.

Cited by

  1. Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion vol.26, pp.1, 2014, https://doi.org/10.4334/JKCI.2014.26.1.087