DOI QR코드

DOI QR Code

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete

콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도

  • 박창규 (군산대학교 토목공학과)
  • Published : 2002.02.01

Abstract

The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

전단문제에서는 일부 설계기준(AASHTO 1994)에 이미 수정압축장이론이 도입되었다. 그리고 현행 콘크리트 설계기준에는 콘크리트의 전단강도가 철근의 전단강도와 합하여 공칭전단강도를 계산하고 있다. 그러나 최근에 개정된 콘크리트설계기준에는 콘크리트의 비틀림강도가 공칭비틀림강도 계산에서 누락되었다. 콘크리트의 인장응력은 비록 크기가 작으나 균열후에 균열사이의 콘크리트에 존재한다. 그러나 휨과 비틀림문제에서는 균열 후 콘크리트의 인장강성은 생략되고 있다. 역학적으로 콘크리트보의 비틀림거동은 전단거동과 매우 유사하다. 그러므로 균열 후 콘크리트의 비틀림강도를 철근콘크리트 보의 공칭비틀림강도의 계산에 포함시켜야 한다. 본 논문에서는 콘크리트의 평균주인장응력이 이루는 콘크리트의 비틀림강도를 횡방향 비틀림철근의 비틀림강도와 함께 공칭비틀림강도를 구성함을 밝혔으며, 이의 타당성을 검증하기 위해 개정 전후의 ACI 의 설계기준에 의한 공칭비틀림강도와 함께 실험값과 비교하였다. 그 결과 본 논문이 제안한 모델에 의한 공칭비틀림강도가 가장 좋은 결과를 보였다.

Keywords

References

  1. Rausch, E., "Design of Reirforced Concrete in Torsion," (Berechung des Eisenbetons gegen Verdrehung), Ph. D. thesis. Technische Hochschule, Berlin, 1929, p.53 (in German). A second edition was published in 1938 and a third in 1952. The third edition has the title: "Drillung (Torsion), Schub and Scheren in Stahlbetonbau," Deutcher Ingenieur-Verlag Gmb H, Dusseldorf, p.168.
  2. Anderson, P., "Experiments with concrete in Torsion," Transactions, ASCE, Vol. 100, 1935, pp.949-83. Also, Proceedings, ASCE, Vol. 60, May 1934, pp.641-52.
  3. Cowan, H. J., "Elastic Theory for Torsional Strength of Rectangular Reinforced Concrete Beams," Magazine of Concrete Research (London), Vol.2, No.4, July 1950, pp.3-8. https://doi.org/10.1680/macr.1950.2.4.3
  4. Hsu, T. T. C., "Ultimate Torque of Reinforced Rectangular Beams," Journal of Structural Division, ASCE, Vol. 94, ST. 2, Feb. 1968, pp.485-510.
  5. ACI 318-71: "Building Code Requirements for Reinforced Concrete (ACI 318-71)," American Concrete Institute, Detroit, 1971.
  6. Lampert, P., and Thurlimann, B., "Torsion sversuche an Stahlbetonbalken," (Torsion Tests of Reinforced Concrete Beams) Bericht Nr. 6506-2, June 1968; "Torsions-Biege-Versuch an Stahlbetonbalken," (Torsion-Bending Tests on Reinforced Concrete Beams) Bercht Nr. 6506-3, January 1969, Institut fur Bauststik, ETH, Zurich, Switzerland.
  7. CEB-FIP, "Model Code for Concrete Stuctures," CEB-FIP International Recommendations, third edition, Comite Euro-International du Beton, (CEB), 1978.
  8. Collins, M. P., and Mitchell, D., "Shear and Tor sion Design of Prestressed and Non-Prestressed Concrete Beams," Journal of the Prestressed Concrete Institute, Vol. 25, No.5, September-October, 1980, pp.32-100.
  9. Robinson, J. R. and Demorieux, J. M., "Essais de Traction-Compression sur Modelis d'ame de Poutre en Beton Arme, " Part I, June 1968; Part II, May 1972, Institut de Recherches Applliquees du Beton Arme (IRABA).
  10. Vecchio, F., and Collins, M. P., "Stress-Strain Characteristics of Reinforced Concrete in Pure Shear," IABSE Colloquim Advanced Mechanics of Reirforced Concrete, Delft, 1981, Final Report, pp.211-225.
  11. Hsu, T. T. C., and Mo, Y. L., "Softening of Concrete in Torsional Members-Theory and Tests," ACI Journal, No.82-25, May-June 1985, pp.290-303.
  12. Hsu, T. T. C. and Pang, X. D., "Fixed Angle Softened Truss Model for Reinforced Concrete," ACI Structural Journal, No. 93-S18, March-April 1996, pp.197-207.
  13. ACI 318-95: "Building Code Requirements for Reinforced Concrete (ACI 318-95)," American Concrete Institute, Detroit, 1995.
  14. Collins, Michael P., and Mitchell, D., "Diagonal Compression Field Theory-A Rational Model for Structural Concrete in Pure Torsion," ACI Journal, Proceedings, Vol.71 , No.8, Aug. 1974, pp.396-408.
  15. Vecchio, Frank J. and Collins Michael P., "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear," ACI Structural Journal, No. 83-22, Mar.-Apr., 1986, pp.219-231.
  16. Rahal, K. N., and Coliins, M. P., "Analysis of Sections subjected to Combined Shear and Torsion-A theorectical Model," ACI Structural Journal, No. 92-S44, July-August 1995, pp.459-469.
  17. 오병환, 박창규, "비틀림을 받는 프리스트레스트 콘크리트 부재의 새로운 비선형 해석 모델," 콘크리트학회 논문집, 제6권 2호, 1994, pp.159-168.
  18. Hsu, T. T. C., "Torward A Unified Nomenclature for Reinforced-Concrete Theory," Journal of Structural Engineering, ASCE, Vol. 112, No.3, March, 1996, pp.275-283. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(275)
  19. 신현묵, 변동균, "철근 콘크리트," 동명사, 2001. p. 149.
  20. Hsu, Thomas T. C., and Mo, Y. L., "Softening of Concrete in Torsional Members," Research Report No. ST-TH-001-83, Dept. of Civil Eng., Univ. of Houston, March, 1983.
  21. Belarbi, A., and Hsu, T. T. C., "Constitutive Laws of Softened Concrete in Biaxial Tension-Compression," ACI Structural Journal, Vol. 92, No.5, September-October 1995, pp.562-573.
  22. Pang, X. B., and Hsu, T. T. C, "Behavior of Reinforced Concrete Membrane Elements in Shear," ACI Structural Journal, Vol.92, No.6, November-December 1995, pp.665-679.

Cited by

  1. Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion vol.26, pp.1, 2014, https://doi.org/10.4334/JKCI.2014.26.1.087