짧은 터널 내의 연기거동에 관한 연구

A Study of Smoke Movement in a Short Tunnel

  • Kim, Sung-Chan (Department of Mechanical Engineering, Chungang University) ;
  • Ryou, Hong-Sun (Department of Mechanical Engineering, Chungang University) ;
  • Kim, Chung-Ik (Department of Mechanical Engineering, Chungang University) ;
  • Hong, Ki-Bae (Department of Thermal Engineering, Chungju National University)
  • 발행 : 2002.03.01

초록

터널화재시 화원의 크기에 따른 연기기동을 파악하기 위하여 모현실험 및 수치해석이 수행되었다. 모형실험의 결과를 실제 터널에 대해 적용하기 위하여 Frode상사법을 이용하였다. 터널공간내의 화재 해석에 대한 수치해석의 타간성을 입증하기 위하여 모형실험과 수치해석에서 얻어진 연층의 온도분포를 비교하였다. 터널내 온도분포를 해석함으로써 배기장치가 없는 짧은 터널에 대하여 연층은 전체 터널 높이의 절반 이하로 하강하지 않는다는 사실을 파악하였다. 또한 실험에서 얻어진 연층선단의 전파속도는 화재 발생부의 1/3 풍에 비례한다는 사실을 파악하였으며 이는 기존의 경험식 및 수치해석결과와도 잘 일치하였다. 따라서 짧은 터널에서 화재시 피난대책을 수립하는데 있어서 연층의 수평전파가 수직전파에 비해 중요한 설계변수임을 본 연구를 통하여 제시하였다.

This paper concerns smoke propagation in tunnel fires with various size of fire source. Experiments carried out in model tunnel and those results were compared with numerical results. The Froude scaling law was used to scale model tests for comparison with larger scale tests. In order to validate for numerical analysis, temperature distribution of predicted data was compared with measured data. Examining the temperature distribution, we found that smoke layer does not come down under 50% of tunnel heights for a short tunnel heights for a short tunnel firs without ventilation. Front velocity of smoke layer is proportional to the cube root of heat release rate. And it is in good agreement with existing empirical expression and numerical prediction. In a short tunnel fire, horizontal propagation of smoke layer is more important than vertical smoke movement for evacuation plan.

키워드

참고문헌

  1. Y. Oka and G. T. Atkinson, 1995, Control of smoke flow in tunnel fires, Fire Safety Joumal, 25, 305-322 https://doi.org/10.1016/0379-7112(96)00007-0
  2. W. K. Chow, 1996, Simulation of tunnel fires using a zone model, Tunnelling and Underground Space Technology, 11(2), 221-236 https://doi.org/10.1016/0886-7798(96)00012-0
  3. S. Miles and S. Kumar, 1999, Validation of CFD model for fires in the Memorial Tunnel, Proceedings of the 1st International Conference on Tunnel Fires and One-day Seminar on Escape from Tunnels, 213-222
  4. I. Riess and M. Bettelini, 1999, The prediction of smoke propagation due to road tunnel fires, Proceeding of the 1st International Conference on Tunnel Fires and One-day Seminar on Escape from Tunnels, 213-222
  5. C. C.Ndubizu, D. E. Ramaker, P. A. Tatem, F. A. William, 1983, A model of freely burning pool fires, Combustion Sci. Tech, 31, 233-247 https://doi.org/10.1080/00102208308923644
  6. J. G. Quinticre, 1988, Scaling Application in Fire Research, Proceeding of the International Symposium on Scale Modeling
  7. G. Cox, 1995, Combustion Fundamentals of Fire, Academic Press, 101-175
  8. J. C. Yang, A. Hamins and T. Kashiwagi, 1994, Estimate of the effect of scale on radiative heat loss fraction and combustion efficiency, Combustion Science and Tech., 96, 183-188 https://doi.org/10.1080/00102209408935354
  9. Y. Wu and M.Z.A. Baker, 2000, Control of smoke flow in tunnel fires using longitudinal ventilation systems - a study of the critical velocity, Fire Safety Journal, 35, 363-390 https://doi.org/10.1016/S0379-7112(00)00031-X
  10. T. K. Fannelop, 1994, Fluid Mechanics for Industrial Safety and Environmental Protection, Industrial Safety Series, 3, Elsevier
  11. W. K. Chow, 1995, A Comparison of the use of fire zone and field models for simulating atrium smoke filling process, Fire Safety Joumal, 25, 337-353 https://doi.org/10.1016/0379-7112(96)00001-X
  12. J. S. Rho and H. S. Ryou, 1999, A numerical study of atrium fires using deterministic models, Fire Safety Journal, 33, 213-229 https://doi.org/10.1016/S0379-7112(99)00026-0