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Free Vibrations of Arches in Cartesian Coordinates
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ABSTRACT

The differential equations governing free vibrations of the elastic arches with unsymmetric axis are
derived in Cartesian coordinates rather than in polar coordinates, in which the effect of rotatory inertia
is included. Frequencies and mode shapes are computed numerically for parabolic arches with both
clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP
2000 are made to validate theories and numerical methods developed herein. The convergent efficiency
is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest
four natural frequency parameters are reported, with and without the rotatory inertia, as functions of
three non-dimensional system parameters: the rise to chord length ratio. the span length to chord

length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.
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1. INTRODUCTION

Arches are one of the most important basic
structural units as well as the beams, columns and
plates. Most complicated structures consist of only
these basic units and therefore it is very attractive
research subject to analysis both the static and
dynamic behavior of such units including the
arches.
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The problems of free vibrations of arches have
been the subject of much work due to their many
practical applications. Furthermore, characteristics
of free vibrations of structures including arches are
definitely unique, which are consequently used as
an assessment index in evaluating the soundness
of structures.

The governing equations and its significant
historical literature on the free in-plane vibrations
of elastic arches have been reported in many
than  three

Background material for the current study was

references  for  more decades.

critically reviewed by Lee and Wilson.'” Briefly,
such works included studies of the non-circular

arches with predictions of only the lowest

frequency in flexure by Romanelli and Laura,””

)

and in extension by Wang.” and Wang and

4.

Moore ™' studies of circular arches with predictions

of the higher frequencies by Wolf® and Veletsos

(6)

et al. . studies of arches with variable curvature

of the higher frequencies in flexure by Lee and
Wilson," Kang and Bert,'” Lee et al."” and Oh

9),

st al.’”’: and the effects of transverse shear and

rotatory inertia on free vibration frequencies of

(1 (1D

arches by Irie et al, Davis et al. " and Wilson

and Lee'"”
(1) to

present the differential equations for free, planar

This paper has three main purposes :

vibrations of arches with variable curvature and
unsymmetric axis, where all equations are derived
than
(2) to include the effect of rotatory
inertia in the differential equations: and (3) to

in Cartesian coordinates rather iIn polar

coordinates :
llustrate the numerical solutions to the newly
derived equations for a broad class of parabolic
arches.

In most previous works on arch vibrations, the
polar coordinates were employed and also the
effect of unsymmetric axis was excluded in the
paramelric studies of vibration problems of arches.
“he results presented herein extent significantly
previous works. That is. using the Cartesian
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@ : Inclination of e with x-axis

Fig. 1 Geometry of object arch and its variables

with  highly
convergent numerical methods, the free vibration

formulation together efficientand
frequencies and mode shapes, with and without
the rotatory inertia, are investigated for parabolic
arches with unsymmetric axis. Such numerical
results are presented for both clamped ends and
both hinged ends. The lowest four non-dimensional
frequency parameters are shown as functions of
three system parameters: the rise to chord length
ratio, the span length to chord length ratio, and
the slenderness ratio.

The following assumptions are inherent in this
theory : the arch is linearly elastic: both tangential
and radialdisplacements are considered and the
small deflection theory is governed. In addition,

the arch is assumed to be in harmonic motion,

2. MATHEMATICAL MODEL

The geometry and nomenclature of the arch,
placed in the Cartesian coordinates (x, y). with

A 12 5, 20023/971
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variable curvature and unsymmetric axis are
shown in Fig. 1. The arch is supported by either
both clamped ends or both hinged ends. The
geometric variables are defined as follows,

The shape of parabolic arch, which is chosen as
the object arch with variable curvature herein, is
expressed in terms of (/, #) and the coordinate
x in the range from x =0 to x =L . That is,

y=—(4hl)x(x-1), 0Sx<L 1)

A small element of the arch is shown in Fig. 2
in which are defined the positive directions for the
axial force N, the shear force @, the bending
moment M, the tangential inertia force F., the

radial inertia force F., and the rotatory inertia

couple Cy. Treating the inertia forces and the
inertia couple as equivalent static quantities, the
three equations for “dynamic equilibrium”™ of the

element are

N'4+Q+pF, =0 (2)

Q'—N+pFw=0 (3)

piM'-0-C, =0 "
where () is the operator d/dé.

The equations that relate N, M and & to the

. 13
displacements » and w are

O+dQ N+dN
F,
% M+dM
\
% N
\
N
N
N
PN

Z

Fig. 2 Element subjected to stress resultants
and inertia forces

N =EAp™'[(V'+ W)+ p2 (W + w)] (5)
M = EAr? p (W +w) (6)
w=p"(W-v) %)

where E is Young's modulus, A is the cross-
sectional area and 7 is the radius of gyration of
cross-section.

The arch is assumed to be in harmonic motion,

or each coordinate is proportional to sin(w;#)

where @; is the 7 th circular frequency and ¢ is
time. Then the tangential and radial inertia forces,
and rotatory inertia couple per unit arc length are,

respectively,
Fv = ma)izv (8)
F, =mow (9)
C, =mo 'y =mor’p” (W =v)

where m is the mass per unit arc length,
When Eqgs. (5) and (6) are differentiated once,
the results are

N = EAp ' [V + W)+ 1 p2 p' (W +w)
~p7 'V +w) =3 p7 o' (W + )] (11)
M’ =~EAr? p 2 [(w"+w)=2p" o'W +w)] (12)

When Egs. (10) and (12) are substituted into
Eq. (4), then

Q=p~'M'-RC,
=~EAr? p2 (W +w)=2p7 p' (W + w)]
—~Rmo rp™ (W -v) (13)
where the index R is defined as follows,

(14.1)
(14.2)

R=1if Cy is included.
R=0if Cvs is excluded.

The following equation is obtained by

differentiating Eq. (13).
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Q,‘:—EAVZ —3[(W +W) 5p41p’(w +W)
+2p7(4p™ " = pYW + W)
—Rma, P p (W =)= p” (W —=v)] (19)

From Fig. 1, it is seen that the inclination @ is
related to the coordinate x. By the mathematical
definition,

6 =rx/2—tan"' (dy/dx)
=7/2—tan " [—(4hl?)(2x =1)] (16)

When Eq. (16) is differentiated, the result is
do = @BhIH[I* +16h*(2x-1)*]"dx (17)

Define the following arch parameters.

g, =1/EBhIHI* +16h*(2x-1)*]

(18.1)

g, =Bh/1*)2x-1I) (182)

g, =16h/1° (18.3)

From Eq. (17), and with Egs. (18.1)~(183),

~he following differential operators are obtained.

4a._,4d
40 %'y (19)
dr _ a2 db 4
407 5 g2 B2 (20)
d3? ; d? , d?
d6’3—g1 dx3+3gl gzdx_z
d
+g|(g1g3+g22)d— (21)
X
d4 P 4 3 3
a7 T R T

2
2 2. d
+g, (4g,2;+7g, )F

d
+g,8,(4g,8; '*‘gzz);,;‘ (22)

The radius of curvature p at any point of the
(23). Also, its
derivatives o and p’* can be expressed in terms
of x by using Eq. (23) with Egs. (19) and (20)

parabolic arch is expressed as Eq.

as Eqgs. (24) and (25), respectively. That is,

p=[1+(dy/dx)*1"*(d?y/dx*)™

=(1/x/5)g13/2g3”2 (23)
p=(32/4g " g,g," (24)
P =(3V2/8)g, g, " (28,8, +3¢,") (25)
Now cast the differential equations of free

vibration for the arch into non-dimensional form
by introducing the non-dimensional parameters as

follows.
t=x/1 (26)
n=y/l (27)
f=nrnll (28)
e=1L/l (29)
A=/l (30)
s=w/l (31)
s=I[lr (32)

(x, ¥), the rise &, the
span length L, and the displacements » and w

Here the coordinates

are normalized by the chord length /7, and S is
the slenderness ratio.

When Egs. (5), (9), and (15) together with
Eqs. (18)~(32) are used in Eq. (3), the result is
Eq. (33). Also, when Egs. (8), (11) and (13) are
combined with Egs. (2), the result is Eq. (34).
That is,

5% =a,8" +(ay +Re;’ay)8"

+(a, +Rea;)8" +(ag +¢,’a;)8

+¢ (ag + Rag)A +Re; ayA (33)
A= a“5ﬁ +(a12 +Rc[2a13)5i +a145

+alsﬂ'i +c[2(a16 +Ral7)/1 (34)

d/dE, and the

constants of @; through @17 are as follows.

where () is the operator

a =1-5b1_1b2 (35.1)

ay, =—b (64 b, +2.5b," —b;, +2) (35.2)
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a,=-8fs7h, (35.3)
a, =b, b, (56 fb, ~11.5b," +b, +5.5) (35.4)
as =4f57°b, (35.5)
a, =—b " (85’ +18b,> —b,) (35.6)
a, =641%b° (35.7)
ag =8 f5° (35.8)
a, =8f57 (35.9)
ay, =—12f57b b, (35.10)
a,, =0.1875f "'s72b, b, (35.11)
a, =0.1875 7" s72b, b, — b (35.12)
ay,=s"b" (35.13)
ay, =1.5b7b,(0.125 7525, +1) (35.14)
a5 =0.5b,"'b, (35.15)
ay =—8fs7b, (35.16)
a, =-s"p" (35.17)
where,
b =0.125/7[1+16f* (25 ~1)’] (36.)
b, =8f(25-1) (36.2)
by = 6[1+64 £2(2£ ~1)*] (36.3)

The non-dimensional frequency parameter is

defined as

cl.za)ir_ll2 m/(EA)

=’ JyAIED), i=1,2,3,4, (37)
where 7 is the mass density.

Now consider the boundary conditions. At a
clamped end (x =0 or x= L), the boundary
conditions are v=w=¥ =0 and these relations
can be expressed in the non-dimensional form as

A=0 at £€=0 o £=¢ (38)
=0 at £€=0 or £€=e (39)
8'=0 at £=0 o £=¢ (40)

Here, the latest Eq. (40) implies that the rotation

of cross-section ¥ expressed in Eq. (7) is zero.
At a hinged end x=1L), the

boundary conditions are v=w=M =0 and these

(x=0 or

relations can be expressed in the non-dimensional

form as
A=0 at £=0 or £=¢ (41)
§=0 at £€=0 or £€=¢ (42)
8"+ b15,8'=0 at £=0 or E=¢  (43)

Also, the latest Eq. (43) implies that the bending
moment M expressed in Eq. (6) is zero.

3. NUMERICAL METHODS AND
DISCUSSION

Based on the above analysis, a general
FORTRAN computer program was written to
calculate the frequency parameters ¢; and the
corresponding mode shapes A=A4,(&), 8=48,(£)
and ¥= ¥A{£) The numerical methods described
by Lee and Wilson,", and Lee et al™ were
used to solve the differential Egs. (33) and (34),
subjected to the end constraint Eqgs. (38) ~(40) or
Eqs. (41)~(43). First,
method combined with the Regula-Falsi method

the determinant search
(15)
was used to obtain the frequency parameter ¢;,
and then the Runge-Kutta method"™ was used to
calculate the mode shapes A, 6 and 7.

Prior to executing the numerical studies, the
convergence analysis, for which f=0.3, ¢=0.2,
s =50,
the appropriate step size A in the Runge-Kutta

and R =1, was conducted to determine

method. Figure 3 shows 1/A& versus ¢: curves,
in which a step size of 1/4&£=20 is found to
give convergence for ¢; to within three significant
figures. It is noted that the convergence efficiency
herein is highly promoted, under same convergence
criteria, comparing the appropriate 1/4£& =50
obtained by Oh"™ in polar coordinates. However,
the step size of 4£&=1/50 was used herein in
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order to increase accuracy of numerical solutions.

Four lowest values of ¢;(7=1,2,3,4) and the
corresponding mode shapes were calculated in this
study. Numerical results, given in Table 1, Table 2
and Figs. 4 through 7. are now discussed. The
first series of numerical results are shown in Table
L. These studies served as an approximate check
on the analysis presented herein. For comparative
purposes, finite element solutions based on the
commercial packages SAP 2000 were used to

compule the first four frequency parameters ¢;

300

b /=03, e=0.8, 5=50, R=1 ]

L : both clamped ends ]

250 E ........ > both hinged ends 7

[ i=1, 2, 3, 4: from bottom to top ]

200 F .

R — o — - —— Y

<G 150 —

P 55— & =]

100 F Ac-cpeaaeeas F Aymmnen -

r B - = &

so b —8— =H—F = _]

R Amm B PN 3

0 F . [ T SN 1

0 20 40 60 80 100
1/

Fig. 3 Convergence analysis

Table 1 Comparisons of ¢; between this study
and SAP 2000*

for both clamped ends and both hinged ends. See

the geometry, mechanical and cross-sectional
properties of arches used in comparisons in the
appendix. The results showed that the 100 finite

elements were necessary to match within a

tolerance of about 25 % wvalues of ¢; computed
by solving the governing differential equations.

All of numerical results that follow are based on
the analysis reported herein. The effects of
rotatory inertia on natural frequencies are shown
in Table 2. It is apparent that the effect of
rotatory inertia is to always depress the natural
frequencies, in which these depressions are less
than about 3 %. Further, the frequencies of both
clamped ends are always greater than those of

300 T T l_r T T T I T T ‘lil T T T I T 1 T
e=0.8, §=50, R=1

. both clamped ends

———————— > both hinged ends

i=1, 2, 3, 4 : from bottom to top

250

PITET AT I SR AR

LI L 1 e B

Frq. parameter ¢;
Geometry i This Ratio®*
study SAP2000
Both clamped ends. ! 60'1? 60.30 0.997
F=03e=08 | 2| 8012 | 8096 | 05%
50 R -1 31 1335 | 1369 | 0975
4 180.4 181.2 0.996
. 1 40.34 40.92 0.986
Both h d . : : :
oth hinged ends. |, | 20 o | goaz | 0983
f=03,e=08, | °
So50.R-1 31 1006 | 1009 | 0997
| 4 170.5 173.6 0.982

* The three-dimensional frame element is used in
SAP 2000.
** Ratio = (this study)/(SAP 2000)

200
G150
100
50
0 _....I$1..I..,.J....I... ]
0.0 0.1 0.2 0.3 0.4 0.5
7
Fig. 4 ¢; versus f curves
Table 2 The effect of rotatory inertia on
frequencies
Geometry i Frq. parameter ¢ Ratio®
R=0 R=1]
Both clamped ends. 1 | 6105 60.13 0.985
£=03,e=08, 2 | 8044 80.12 0.996
_50 3 | 1360 1335 0.982
5= 4 [ 1814 | 1804 | 0994
Both hinged ends 1 | 4059 40.34 0.993
£203,e=0.8, 2 | 79.35 79.07 0.996
. 3 {1027 100.6 0.980
- 4 | 1745 1705 0.977

* Ratio = (R = 1)/(R=0)
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o) ¥ 7 -

o §

AL F A FE

=
.

both hinged ends, other parameters remaining the
same.,

It is shown in Fig. 4, for which ¢ =08, s=50
and R =1, that each frequency curve of second
modes of both clamped ends and both hinged
ends reaches a peak as the horizontal rise to chord
length ratic f is increased while the other
frequency parameters decrease as f is increased.
Further, it is observed for these unsymmetric arch
configurations that two mode shapes can exist at
frequency, a phenomena that was
previously observed only for

configurations.m For both hinged ends, the first

a single
symmetric arch

and second modes have the same frequency
¢;=c¢y =5306 at s =0153 m.
However, the frequency curves of first and second

(marked as

modes for both clamped ends come close each
other but not close.

It is shown in Fig. 5, for which =03,
and R=],
decrease as the span length to chord length ratio

s =50

that the frequency parameters ¢;

e 1s increased. Particularly, it is noted that the
frequency parameters of third and fourth modes
are more significantly decreased as e gets smaller
value,

It is shown in Fig. 6, for which f=0.3,
0.8 and R =1, that the frequency parameters ¢;

e=

1000 T T I T T T I L T I T T T I T T
[ f=0.3, 5=50, R=1

: both clamped ends

: both hinged ends

i=1, 2, 3, 4 : from bottom to top

800

600

C;

400

200

PRI NN ST ST N SO AT SN S ST ST R N S

T

RN U DT RRTI |

0 1 1 1
025 0.50 0.75 1.00 125 1.50
e
Fig. 5 ¢; versus e curves
976 /et=4aSr s Es=28/AM 1248 A 123,

increase, and in most cases approach a horizontal
asymptote, as the slenderness ratio s is increased.
Further, it is seen from all of Figures mentioned
above that frequencies of both clamped ends are
always greater than those of both hinged ends,
other parameters remaining the same.

400 T T T T I T T T T I T T T T | T T T T
I f=03, ¢=0.8 R=1 ]
r : both clamped ends ]
| o-eeeee- : both hinged ends J
300 } i=1, 2, 3, 4 : from bottom to top
S 200
100 +
0 I T S
0 30 100 150 200

S
Fig. 6 ¢: versus s curves

f=0.3, e=0.8, =50, R=1

: undeformed axis
—— : both clamped ends
— —— : both hinged ends

c=40.34
£=0.8

£=0
Fig. 7 Example of mode shapes
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Figure 7 shows the computed mode shapes with
=03, e=08 s=50 and R=1 for both
clamped ends and both hinged ends. From these
and the
maximum amplitude and nodal points of each

JAgures, the amplitude positions  of
mode can be obtained, which is widely used in

the fields of vibration control.

4. CONCLUDING REMARKS

This study deals with the free vibrations of
arches with unsymmetric axis. The governing

differential equations are derived in Cartesian
coordinates rather than in polar coordinates, in
which the effect of rotatory inertia on the natural
frequency is included. The differential equations,
subjected to parabolic arches, newly derived herein
were solved numerically to calculate both natural
frequencies and mode shapes. FFor validating the
“heories and numerical methods presented herein,
frequency parameters obtained in this study are
compared to those of SAP 2000. The convergent
efficiency of numerical methods developed herein
is highly improved under the differential equations
in Cartesian coordinates. As the numerical results,
the relationships between the frequency parameters
and the various non-dimensional arch parameters
mode shapes are

are reported, and typical

presented. It is expected that results obtained
herein can be practically utilized in the fields of

vibration control.
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APPENDIX

The geometry, mechanical and cross-sectional
properties of arches used in comparisons are
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1=05m. L=04m, A=015m. y=26%9 kg/m",
E=689%l0N/m’. A=1%-4m’ and [=1%-8m’

By using these values, the angular frequencies
; of arches are obtained in SAP 2000 as follows.

Both clamped: 1223, 1641, 27.77. 36.73 rad/s
Both hinged: 8.30, 16.31, 20.46, 35.21 rad/s
The non-dimensional frequencies ¢; of SAP
2000 are obtained by Eq. (37) and above angular
frequencies as follows.

Both clamped: 60.30, 80.96, 136.9, 181.2
Both hinged: 40,92, 80.43, 1009, 173.6
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