Cardiovascular Responses and Nitric Oxide Production in Cerebral Ischemic Rats

  • Shinl, Chang-Yell (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Lee, Nam-In (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Je, Hyun-Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Kim, Jeong-Soo (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Sung, Ji-Hyun (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Kim, Dong-Seok (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Lee, Doo-Won (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Bae, Ki-Lyong (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Sohn, Uy-Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
  • Published : 2002.10.01

Abstract

We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of $Ca^{2+}$ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that $Ca^{2+}$ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.

Keywords

References

  1. Brunner, F., Interaction of nitric oxide and endothelin-1 in ischemia/reperfusion injury of rat heart. J. Mol. Cell. Cardiol., 29, 2363-2374 (1997) https://doi.org/10.1006/jmcc.1997.0470
  2. Buchan, A. M., Slivka, A. and Xue, D., The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res., 574, 171-177 (1992) https://doi.org/10.1016/0006-8993(92)90814-P
  3. Cai, Z., Lin, S. and Rhodes, P. G., Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur. J. Pharmacol., 437(4), 139-145 (2002) https://doi.org/10.1016/S0014-2999(02)01289-X
  4. Callewaert, G., Cleemann, L. and Morad, M., Epinephrine enhances $Ca^{2+}$ current-regulated $Ca^{2+}$ release and $Ca^{2+}$ reuptake in rat ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A, 85, 2009-2013 (1988) https://doi.org/10.1073/pnas.85.6.2009
  5. Cho, H. J., Xie, Q. w., Calaycay, J., Mumford, R. A, Swiderek, K. M., Lee, T. D. and Nathan, C., Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med., 176, 599-604 (1992) https://doi.org/10.1084/jem.176.2.599
  6. del Pilar Fernandez, M., Meizoso, M. J., Lodeiro, M. J. and Belmonte, A., Effect of desmethyl tirilazad, dizocilpine maleate and nimodipine on brain nitric oxide synthase activity and cyclic guanosine monophosphate during cerebral ischemia in rats. Pharmacology, 57, 174-179 (1998) https://doi.org/10.1159/000028239
  7. East, S. J. and Garthwaite, J., NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci. Lett., 123, 17-19 (1991) https://doi.org/10.1016/0304-3940(91)90147-L
  8. Faraci, F. M., Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurgery., 33(4), 648-658 (1993) https://doi.org/10.1227/00006123-199310000-00014
  9. Garcia, .J. H., Liu, K. F., Yoshida, Y., Lian, J., Chen, S. and del Zoppo, G. J., Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am. J. Pathol., 144, 188-199 (1994)
  10. Grandati, M., Verrecchia, C., Revaud, M. L., Allix, M., Boulu, R. G. and Plotkine, M., Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br. J. Pharmacol., 122, 625-630 (1997) https://doi.org/10.1038/sj.bjp.0701427
  11. Green, E. J., Pazos, A J., Dietrich, W. D., McCabe, P. M., Schneiderman, N., Lin, B., Busto, R., Globus, M. Y. and Ginsberg, M. D., Combined postischemic hypothermia and delayed MK-801 treatment attenuates neurobehavioral deficits associated with transient global ischemia in rats. Brain Res., 702, 145-152 (1995) https://doi.org/10.1016/0006-8993(95)01034-1
  12. Holtz, M. L., Craddock, S. D. and Pettigrew, L. C., Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Res., 898, 49-60 (2001) https://doi.org/10.1016/S0006-8993(01)02140-0
  13. ladecola, C., Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci., 20, 132-139 (1997) https://doi.org/10.1016/S0166-2236(96)10074-6
  14. ladecola, C., Pelligrino, D. A, Moskowitz, M. A and Lassen, N. A, Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow Metab., 14(2), 175-192 (1994) https://doi.org/10.1038/jcbfm.1994.25
  15. ladecola, C., Xu, X., Zhang, F.,el-Fakahany, E. E. and Ross, M. E., Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 15, 52-59 (1995) https://doi.org/10.1038/jcbfm.1995.6
  16. ladecola, C., Zhang, F.,Casey, R., Clark, H. B. and Ross, M. E., Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke, 27, 1373-1380 (1996) https://doi.org/10.1161/01.STR.27.8.1373
  17. Kader, A., Frazzini, V. I., Solomon, R. A. and Trifiletti, R. R., Nitric oxide production during focal cerebral ischemia in rats. Stroke, 24,1709-1716 (1993) https://doi.org/10.1161/01.STR.24.11.1709
  18. Kobavashi, M., Kuroiwa, T., Shimokawa, R., Okeda, R. and Tocoro, T., Nitric oxide synthase expression in ischemic rat retinas. Jpn. J. Ophthalmol. 44(3), 235-244 (2000) https://doi.org/10.1016/S0021-5155(99)00220-8
  19. Lo W. C., Lin, H.C., Ger, L. P., Tung, C. S. and Tseng, C. J., Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats . Hypertension, 30(6), 1499-1503 (1997) https://doi.org/10.1161/01.HYP.30.6.1499
  20. Maulik N., Engelman, D. T., Watanabe, M., Engelman, R. M., Maulik, G., Cordis, G. A. and Das, D. K., Nitric oxide signaling in ischemic heart. Cardiovasc. Res., 30, 593-601 (1995) https://doi.org/10.1016/S0008-6363(95)00093-3
  21. Mayer, M. L. and Miller, R. J., Excitatory amino acid receptors, second messengers and regulation of intracellular $Ca^{2+}$ in mammalian neurons. Trends Pharmacol. Sci., 11, 254-260 (1990) https://doi.org/10.1016/0165-6147(90)90254-6
  22. Morris. S. M., Jr. and Billiar, T. R., New insights into the regulation of inducible nitric oxide synthesis. Am. J. Physiol., 266, E829-839 (1994)
  23. Muloer, M. F.,van Lambalgen, A. A., Huisman, E., Visser, J. J., var den Bos, G. C. and Thijs, L. G., Protective role of NO in the regional hemodynamic changes during acute endotcxemia in rats. Am. J. Physiol., 266, H1558-1564 (1994)
  24. Murphy, K. M. and Snyder, S. H., Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur. J. Pharmacol, 77, 201-202 (1982) https://doi.org/10.1016/0014-2999(82)90021-8
  25. Ohtari, K., Tanaka, H., Yasuda H., Maruoka, Y., Kawabe, A. and Nakamura, M., Blocking the glycine-binding site of NDA receptors prevents the progression of ischemic pathology induced by bilateral carotid artery occlusion in spontaneously hypertensive rats. Brain Res., 871, 311-318 (2000) https://doi.org/10.1016/S0006-8993(00)02486-0
  26. Pabla, R., Buda, A. J., Flynn, D. M., Salzberg, D. B. and Lefer, D. J., Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am. J. Physiol., 269, H1113-1121 (1995)
  27. Rami A. and Krieglstein, J., Neuronal protective effects of calcium antagonists in cerebral ischemia. Life Sci., 55, 2105-23 (1994) https://doi.org/10.1016/0024-3205(94)00391-2
  28. Salom, J. B., Orti, M., Centeno, J. M., Torregrosa, G. and Alborch, E., Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain res., 865, 149-156 (2000) https://doi.org/10.1016/S0006-8993(00)02095-3
  29. Seeber, S., Becker, K., Rau, T., Eschenhagen, T., Becker, C. M. and Herkert, M., Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J. Neurochem., 75, 2472-2477 (2000) https://doi.org/10.1046/j.1471-4159.2000.0752472.x
  30. Shichijo, S., Payan, D. G., Harrowe, G. and Mitsuhashi, M., Histamine effects on the 5-HT1c receptor expressed in Xenopus oocytes. J. Neurosci. Res., 30, 316-320 (1991) https://doi.org/10.1002/jnr.490300206
  31. Siesjo, B. K. and Bengtsson, F., Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab., 9, 127-140 (1989) https://doi.org/10.1038/jcbfm.1989.20
  32. Takeda, Y., Tashima, M., Takahashi, A., Uchiyama, T. and Okazaki, T., Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J. Biol. Chem., 274, 10654-10660 (1999) https://doi.org/10.1074/jbc.274.15.10654
  33. Thiemermann, C., Wu, C. C., Szabo, C., Perretti, M. and Vane, J. R., Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Br. J. Pharmacol., 110, 177-182 (1993) https://doi.org/10.1111/j.1476-5381.1993.tb13789.x
  34. Tracey, W. R., Tse, J. and Carter, G., Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharmacol. Exp. Ther., 272, 1011-1015 (1995)
  35. Tsien, R. W., Ellinor, P. T. and Horne, W. A., Molecular diversity of voltage-dependent $Ca^{2+}$ channels. Trends Pharmacol. Sci., 12, 349-354 (1991) https://doi.org/10.1016/0165-6147(91)90595-J
  36. Wang, P., Ba, Z. F. and Chaudry, I. H., Nitric oxide. To block or enhance its production during sepsis? Arch. Surg., 129, 1137-1142; discussion 1142-1133 (1994) https://doi.org/10.1001/archsurg.1994.01420350035003
  37. Yoshida, T., Waeber, C., Huang, Z. and Moskowitz, M. A., Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci. Lett., 194, 214-218 (1995) https://doi.org/10.1016/0304-3940(95)11752-I