References
- Brunner, F., Interaction of nitric oxide and endothelin-1 in ischemia/reperfusion injury of rat heart. J. Mol. Cell. Cardiol., 29, 2363-2374 (1997) https://doi.org/10.1006/jmcc.1997.0470
- Buchan, A. M., Slivka, A. and Xue, D., The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res., 574, 171-177 (1992) https://doi.org/10.1016/0006-8993(92)90814-P
- Cai, Z., Lin, S. and Rhodes, P. G., Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur. J. Pharmacol., 437(4), 139-145 (2002) https://doi.org/10.1016/S0014-2999(02)01289-X
-
Callewaert, G., Cleemann, L. and Morad, M., Epinephrine enhances
$Ca^{2+}$ current-regulated$Ca^{2+}$ release and$Ca^{2+}$ reuptake in rat ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A, 85, 2009-2013 (1988) https://doi.org/10.1073/pnas.85.6.2009 - Cho, H. J., Xie, Q. w., Calaycay, J., Mumford, R. A, Swiderek, K. M., Lee, T. D. and Nathan, C., Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med., 176, 599-604 (1992) https://doi.org/10.1084/jem.176.2.599
- del Pilar Fernandez, M., Meizoso, M. J., Lodeiro, M. J. and Belmonte, A., Effect of desmethyl tirilazad, dizocilpine maleate and nimodipine on brain nitric oxide synthase activity and cyclic guanosine monophosphate during cerebral ischemia in rats. Pharmacology, 57, 174-179 (1998) https://doi.org/10.1159/000028239
- East, S. J. and Garthwaite, J., NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci. Lett., 123, 17-19 (1991) https://doi.org/10.1016/0304-3940(91)90147-L
- Faraci, F. M., Endothelium-derived vasoactive factors and regulation of the cerebral circulation. Neurosurgery., 33(4), 648-658 (1993) https://doi.org/10.1227/00006123-199310000-00014
- Garcia, .J. H., Liu, K. F., Yoshida, Y., Lian, J., Chen, S. and del Zoppo, G. J., Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am. J. Pathol., 144, 188-199 (1994)
- Grandati, M., Verrecchia, C., Revaud, M. L., Allix, M., Boulu, R. G. and Plotkine, M., Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br. J. Pharmacol., 122, 625-630 (1997) https://doi.org/10.1038/sj.bjp.0701427
- Green, E. J., Pazos, A J., Dietrich, W. D., McCabe, P. M., Schneiderman, N., Lin, B., Busto, R., Globus, M. Y. and Ginsberg, M. D., Combined postischemic hypothermia and delayed MK-801 treatment attenuates neurobehavioral deficits associated with transient global ischemia in rats. Brain Res., 702, 145-152 (1995) https://doi.org/10.1016/0006-8993(95)01034-1
- Holtz, M. L., Craddock, S. D. and Pettigrew, L. C., Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Res., 898, 49-60 (2001) https://doi.org/10.1016/S0006-8993(01)02140-0
- ladecola, C., Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci., 20, 132-139 (1997) https://doi.org/10.1016/S0166-2236(96)10074-6
- ladecola, C., Pelligrino, D. A, Moskowitz, M. A and Lassen, N. A, Nitric oxide synthase inhibition and cerebrovascular regulation. J. Cereb. Blood Flow Metab., 14(2), 175-192 (1994) https://doi.org/10.1038/jcbfm.1994.25
- ladecola, C., Xu, X., Zhang, F.,el-Fakahany, E. E. and Ross, M. E., Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab., 15, 52-59 (1995) https://doi.org/10.1038/jcbfm.1995.6
- ladecola, C., Zhang, F.,Casey, R., Clark, H. B. and Ross, M. E., Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke, 27, 1373-1380 (1996) https://doi.org/10.1161/01.STR.27.8.1373
- Kader, A., Frazzini, V. I., Solomon, R. A. and Trifiletti, R. R., Nitric oxide production during focal cerebral ischemia in rats. Stroke, 24,1709-1716 (1993) https://doi.org/10.1161/01.STR.24.11.1709
- Kobavashi, M., Kuroiwa, T., Shimokawa, R., Okeda, R. and Tocoro, T., Nitric oxide synthase expression in ischemic rat retinas. Jpn. J. Ophthalmol. 44(3), 235-244 (2000) https://doi.org/10.1016/S0021-5155(99)00220-8
- Lo W. C., Lin, H.C., Ger, L. P., Tung, C. S. and Tseng, C. J., Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats . Hypertension, 30(6), 1499-1503 (1997) https://doi.org/10.1161/01.HYP.30.6.1499
- Maulik N., Engelman, D. T., Watanabe, M., Engelman, R. M., Maulik, G., Cordis, G. A. and Das, D. K., Nitric oxide signaling in ischemic heart. Cardiovasc. Res., 30, 593-601 (1995) https://doi.org/10.1016/S0008-6363(95)00093-3
-
Mayer, M. L. and Miller, R. J., Excitatory amino acid receptors, second messengers and regulation of intracellular
$Ca^{2+}$ in mammalian neurons. Trends Pharmacol. Sci., 11, 254-260 (1990) https://doi.org/10.1016/0165-6147(90)90254-6 - Morris. S. M., Jr. and Billiar, T. R., New insights into the regulation of inducible nitric oxide synthesis. Am. J. Physiol., 266, E829-839 (1994)
- Muloer, M. F.,van Lambalgen, A. A., Huisman, E., Visser, J. J., var den Bos, G. C. and Thijs, L. G., Protective role of NO in the regional hemodynamic changes during acute endotcxemia in rats. Am. J. Physiol., 266, H1558-1564 (1994)
- Murphy, K. M. and Snyder, S. H., Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur. J. Pharmacol, 77, 201-202 (1982) https://doi.org/10.1016/0014-2999(82)90021-8
- Ohtari, K., Tanaka, H., Yasuda H., Maruoka, Y., Kawabe, A. and Nakamura, M., Blocking the glycine-binding site of NDA receptors prevents the progression of ischemic pathology induced by bilateral carotid artery occlusion in spontaneously hypertensive rats. Brain Res., 871, 311-318 (2000) https://doi.org/10.1016/S0006-8993(00)02486-0
- Pabla, R., Buda, A. J., Flynn, D. M., Salzberg, D. B. and Lefer, D. J., Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am. J. Physiol., 269, H1113-1121 (1995)
- Rami A. and Krieglstein, J., Neuronal protective effects of calcium antagonists in cerebral ischemia. Life Sci., 55, 2105-23 (1994) https://doi.org/10.1016/0024-3205(94)00391-2
- Salom, J. B., Orti, M., Centeno, J. M., Torregrosa, G. and Alborch, E., Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain res., 865, 149-156 (2000) https://doi.org/10.1016/S0006-8993(00)02095-3
- Seeber, S., Becker, K., Rau, T., Eschenhagen, T., Becker, C. M. and Herkert, M., Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J. Neurochem., 75, 2472-2477 (2000) https://doi.org/10.1046/j.1471-4159.2000.0752472.x
- Shichijo, S., Payan, D. G., Harrowe, G. and Mitsuhashi, M., Histamine effects on the 5-HT1c receptor expressed in Xenopus oocytes. J. Neurosci. Res., 30, 316-320 (1991) https://doi.org/10.1002/jnr.490300206
- Siesjo, B. K. and Bengtsson, F., Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab., 9, 127-140 (1989) https://doi.org/10.1038/jcbfm.1989.20
- Takeda, Y., Tashima, M., Takahashi, A., Uchiyama, T. and Okazaki, T., Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J. Biol. Chem., 274, 10654-10660 (1999) https://doi.org/10.1074/jbc.274.15.10654
- Thiemermann, C., Wu, C. C., Szabo, C., Perretti, M. and Vane, J. R., Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Br. J. Pharmacol., 110, 177-182 (1993) https://doi.org/10.1111/j.1476-5381.1993.tb13789.x
- Tracey, W. R., Tse, J. and Carter, G., Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharmacol. Exp. Ther., 272, 1011-1015 (1995)
-
Tsien, R. W., Ellinor, P. T. and Horne, W. A., Molecular diversity of voltage-dependent
$Ca^{2+}$ channels. Trends Pharmacol. Sci., 12, 349-354 (1991) https://doi.org/10.1016/0165-6147(91)90595-J - Wang, P., Ba, Z. F. and Chaudry, I. H., Nitric oxide. To block or enhance its production during sepsis? Arch. Surg., 129, 1137-1142; discussion 1142-1133 (1994) https://doi.org/10.1001/archsurg.1994.01420350035003
- Yoshida, T., Waeber, C., Huang, Z. and Moskowitz, M. A., Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci. Lett., 194, 214-218 (1995) https://doi.org/10.1016/0304-3940(95)11752-I