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TORSION IN THE HOMOLOGY OF THE DOUBLE
LOOP SPACES OF COMPACT SIMPLE LIE GROUPS

YouNGGI CHOI AND SEONHEE YOON

ABSTRACT. We study the torsions in the integral homology of the
double loop space of the compact simple Lie groups by determin-
ing the higher Bockstein actions on the homology of those spaces
through the Bockstein lemma and computing the Bockstein spec-
tral sequence.

1. Introduction

It is well-known from the Morse theory that the integral homology of
the single loop space of any compact simple Lie group is concentrated
on even dimensions and of torsion free [1]. However the situation is
different when we consider the double loop spaces of compact simple Lie
groups. Here we study p-torsions in the integral homology of the double
loop space of the compact simple Lie groups.

The main tool of the computation is the Bockstein lemma by which we
determine the higher Bockstein actions on the homology of those spaces.
The Bockstein spectral sequence is applied to the study of torsions in
the integral homology of those spaces.

In this paper we get following results. For classical compact Lie
groups, G = SO(n), SU(n), Sp(n), the order of p-torsions in Q2?G
depends on n for an odd prime p. If p = 2, the order of 2-torsions
in 925U (n) depends on n and the order of 2-torsions in 22Sp(n) and
Q250(n) is bounded by 2 or 22. Results are described in Theorem 3.2-
3.8. For the exceptional Lie groups G, the order of p-torsions in 22G is
at most 2% if p = 2, and at most p? if p is an odd prime.
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These are summarized in the following two tables.

H.(Q?X;7) condition order of 2-torsion
H.(2250(8n + i); Z) i£2,6 2
H,.(Q280(8n +1); 2) i=2,6 2 or 22
H.(Q2SU(n); Z) 2rlan<2r <2r
H.(92Sp(n); Z) 2
H.(Q%Gy; Z) 2
H.(22Fy; 2) 2
H.(PEg; Z) 20r 20
H,(2E+ Z) 2
H.(PEs; 2) 2
Table 1. 2-torsion
H.(Q%*X;2Z) condition order of p-torsion
H.(Q*S0(2n); Z) pli<n-1<y <p
H (Q2802n+1);2) |prt<2n+1<p" <p”
H.(Q*SU(n); Z) pPl<n<p <p’
H.(Q*Sp(n); 2) pl<2n-1<p" <p
H. (%G 2) p#5 p
p=>5 52
p=3 3
H,(Q?Fy; Z) 5<p<1l p or p°
p>11 p
p=3 3
H.(Q*Eg; Z) 5<p<1l p or p?
p>11 p
p=3 3 or 32
H.(Q%Er; Z) 5<p<17 p or p*
p> 17 p
p<7 P
H.((YEg; Z) 7T<p<29 p or p°
p>29 p

Table 2. p-torsion for odd primes
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2. Preliminaries

Consider the short exact sequence of coefficients groups

z "tz Z/(p)

which induces the exact couple
H.(X;Z) —— H.(X;2)

k™ .
H.(X;Fp)

where p is induced by the reduction homomorphism and k is the Bock-
stein homomorphism in the long exact sequence. From this exact couple
we get the homology Bockstein spectral sequence { B", 3"} [1] where 4" is
the r-th differential in the Bockstein spectral sequence. Then 8" (z) =y
implies that there exists v € H,.(X;Z) such that k(z) = p"~!v where
y = p(v). Hence if 5"(z) = y is nonzero differential and |y| = s, then we
have p-torsion of order p" in H (X; Z).

By the universal coefficient theorem, the mod p homology has a fol-
lowing splitting:

H,(X;F,) = H,(X; Z) ® F, ® Ext(H,_,(X; Z),F,).

Hence a summand Z/(p") in H,(X;Z) gives rise to summands F, in
Hy(X;F,) and Hyy1(X;F,). Conversely if there are summands F, in
Hy(X;F,) and Hgy1(X;Fp), we can recover a summand in H,(X; Z)
by determining the higher Bockstein actions in the Bockstein spectral
sequence.

Now we mention the homology version of the Bockstein lemma [9,
11).

THEOREM 2.1. Let (E,p,B;F) be a fiber space. Let the element
Unt1 € Hyy1(B;F,) be transgressive, and suppose that for some integer
i(i > 1) and some vy41 € Hyy1(F;Fp), upy1 transgresses to 'v,41.
Then 3**1j.(v,41) is defined, and moreover

D« (lBi—Hj* (Un+1)) = "ﬂlun+1

with the indeterminacy 3*p.(Hpn+1(E;Fp)) where j is the inclusion from
F into E.
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3. Torsions in the classical Lie groups

Let E(z) be the exterior algebra on z and I'(z) the divided power
algebra on z which is free over v;(z) as a Fp,—module with product
vi(x)y;(z) = (i“;j)'yiﬂ(x) . We have homology operations, Dyer—Lashof
operations, Q;(,—1) on the (n + 1)-loop space Qrtix

Qip-1) : Hq(QnHX;]Fp) - Hm+i(p—1)(9n+1X3Fp)

for 0 < i <n when p=2, and for 0 <7 < n and i + q even when p > 2.
They are natural with respect to (n + 1)-loop maps [6]. In particular,
we have Qoz = zP. The iterated power Q¢ denotes composition of @;’s
a times.

If G is a Lie group, G is homotopy equivalent to 0BG. Hence Qy(,—1)
is defined in H.(Q%G;F,). In this paper the subscript of the element
always denotes the degree of that element unless stated otherwise. First
we review the following basic fact.

LEMMA 3.1. For any prime p, the order of p—torsions in H, (Q282n+1,
Z) is p.

Proof. We have H,(Q25%"1Fy) = FalQ%a,_1 : a > 0]. Now we
consider the Bockstein spectral sequence. Then E; = H,(Q225%"+1; F,).
By Nishida relation, we have fQ{ 1 x2,_1 = (Q%¢22,—1)? for each a > 0.
Since this Bockstein spectral sequence is a spectral sequence of an Hopf
algebra, we have Fy = E(z2,-1). Hence there is no higher differential
and Ey = E. So the 2-torsions of H,(Q2S5?"*!;Fy) are all of order 2.
Similarly we can show the same result for odd primes p. 0

We recall the following facts for 2-torsions.

THEOREM 3.2. [3] The order of 2-torsions in H,(Q2Spin(4n +1); Z)
is 2ifi # 1, and 2 or 22 otherwise.

Since Spin(n) is a double covering space of SO(n), we have ?
Spin(n) ~ Q 250(n). So the 2-torsions of H,(Q250(n);Z) and H.
(22 Spin(n); Z) are the same.

For the unitary case, we have the following.
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THEOREM 3.3. [11] Let r and n be such that 2"~! < n < 2". Then
2" annihilates all 2—torsions in H,(22SU(n); Z), but 2"~' does not.

Consider the following fibration:
stp(n) —_— Q2Sp(n + 1) _ Q254n+3.

Then from [2], the corresponding Serre spectral sequence collapses at
the Es—term and we have the following.

THEOREM 3.4. The mod 2 homology of Q2Sp(n + 1) is

H,(Q*Sp(n+1);Fy) = Q) H.(Q254F5Fy)

0<ikn

and 2 annihilates all 2-torsions in H,(22Sp(n + 1); Z).

Therefore 2 annihilates all 2-torsions in H,(Q?G;Z) where G is the
following spaces: Sp(n), Spin(4n), Spin(4n + 1), Spin(4n + 3)

Now we turn to p-torsions for an odd prime p. Combining results
from [10} and [11], we have the following theorem.

THEOREM 3.5. (a) For an odd prime p, there are choices of generators
z; and y; such that H,(Q2SU(n + 1); F,) is isomorphic to

E(Qf,_1)%2i-1:a>0,0<i<n,i% 0 mod p)
® Fpl@5p—1)Y2i~2 : 0 <4 < myi # 0 mod p,p“i > n]

and ﬂt(Q‘(‘p_l)xgi_l) = Qg(p-l)ygi_g where t is the smallest integer such
that pli > n.
(b) Let p be an odd prime, and r and n be integers such that p"~1 <

n < p". Then p" annihilates all p-torsions in H,(Q2?SU(n); Z), but p™—*
does not.

We can derive the following results from the above mod p homology
of the double loop space of SU(n).
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THEOREM 3.6. Let p be an odd prime, and r and n be Integers
such that p"~! < 2n — 1 < p". Then p" annihilates all p—torsions in
H.(Q250(2n + 1); Z), but p"~! does not.

Proof. For an odd prime p, we have the Harris splitting (7]
SU@2n+1) ~, SU(2n+1)/SO(2n + 1) x SO(2n + 1)

where ~, means homotopy equivalence localized at p. Hence by looping
twice, we get

Q28U (2n + 1) ~, Q*(SU(2n +1)/SO(2n + 1)) x Q2SO(2n + 1).

Therefore the mod p homology of Q2SO(2n + 1) for an odd prime p
is one of direct summands of the mod p homology of Q2SU(2n + 1).
Moreover, we have the corresponding mod p homologies:

H(SU(2n +1);Fp) = E(ugiy1 : 1 <1 < 2n),
H. (8U(2n+1)/80(2n 4+ 1);Fp) = E(ugir1: 1 < i< n),
H*(SO(Z’I’L + 1),]Fp) = E(U4i_1 1< < ’I'L)

From the above Harris splitting, we can separate H,(2>SU(2n+1)) into
two parts, so that H,(22S0(2n + 1);F,) is isomorphic to

E(Qf,—1yx2i-1:10dd ,0 <i<2n—1,i% 0 mod p,a > 0)
® FplQSp_1)¥2i~2 14 0dd ,0 <i < 2n—1,i # 0 mod p,p* > 2n — 1]

and Bt(Q%p_l)xzi_l) = Qg(p_l)yzi_g where t is the smallest integer such
that pts > 2n— 1. Therefore in the Bockstein spectral sequence, we have
p-torsion of order pt in Hapei—2(Q?SO(2n +1); Z). Then t becomes the
largest number when i = 1. Hence if r is an integer such that p"~! <
2n —1 < p", then p” annihilates all p-torsions in H,(Q2S0(2n + 1); Z),
but p"~! does not. d0

THEOREM 3.7. Let p be an odd prime, and r and n be integers
such that p"~! < 2n — 1 < p”. Then p” annihilates all p—torsions in
H,.(Q2580(2n + 2); Z), but p"~! does not.
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Proof. We have

H(SO(2n +1);Q) = E(ugi+3:0< i <n—1),
H*(SO(2TL + 2);@) = E(U4i+1 0<i<n— 1) ® E(u2n+1).

Hence H.(Q2S0(2n + 2);Q) = E(ugi—1 : 0 < i < n—1)® F(uzp—1).
Consider the Serre spectral sequence converging to H,(Q250(2n);F,)

Q250(2n + 1) ——— Q280(2n +2) —Z— Q2§2+L,

From the knowledge of the rational homology, H,(2250(2n+2); Q), we
can derive that the first differential from z5;_1 is trivial where

H*(Q2S2n+l;]Fp) = E(Qg_lmgiH1 a Z 0) ® ]Fp{ﬁQg_lxgi_l ta > 0] .

From commutativity between transgressions and homology operations,
the Serre spectral sequence converging to H,(2250(2n+2);F,) collapses
at the E,—term. Hence we have

H.(9%50(2n + 2);F,) = H.(Q2S0(2n + 1);F,) ® H.(Q*S>" 4 F,)

and the conclusion follows. Oa

For an odd prime p, we have the following equivalence
SO(2n + 1) ~, Sp(n)

which was conjectured by Serre and proved by Harris [7]. Hence we have
the following.

THEOREM 3.8. Let p be an odd prime, and r and n be integers
such that p"~! < 2n — 1 < p”. Then p” annihilates all p—torsions in
H.(Q%Sp(n); Z), but p"~! does not.
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4. Torsions in the exceptional Lie groups
The exceptional Lie groups when localized at p split as followings [8]:

G2 P = 3 B2(3,11),
p>5 S§3 xS,

Fy p=5 B(311)x B(15,23),
p=7 B(3,15) x B(11,23),
p=11 B(3,23) x 81! x 81,
p>11 S3x 81 x §15 % §23

Efj pP= ) F4 X B(g, 17),
p>5 Fyx8%xS8Y

E; p=5 B(3,11,19,27,35) x B(15,23),
p=7 B(3,15,27) x B(11,23,35) x 59,
p=11 B(3,23) x B(15,35) x S x 81 x §%7,
p=13 B(3,27) x B(11,35) x S5 x S x §23,
p=17 B(3,35) x S1 x §15 x §19 x §23 x §27,
p>17 83 x S x 815 x §19 x §23 x §27 x S35,

Es p=7 B(3,15,27,39) x B(23,35,47,59),
p=11 B(3,23) x B(15,35) x B(27,47) x B(39,59),
p=13 B(3,27) x B(15,39) x B(23,47) x B(35,39),
p=17 B(3,35) x B(15,47) x B(27,59) x §23 x §39,
p=19 B(3,39) x B(23,59) x S x §27 x §35 x §47,
p=23 B(3,47) x B(15,59) x 823 x §27 x 8§35 x §39
p=29 B(3,59) x 815 x §23 x §27 x §35 x §39 x §47
p>29 83 x 815 x 82 x §27 x §35 x §39 x §47 x §%9,

The space B(2n,+1, ... ,2n,.+1) is built up from fibrations involving
p-local spheres of the indicated dimensions and equivalent to a direct
factor of the p-localization of SU(n + p)/SU(n). The space B(2n +
1,2n + 2p — 1) is equivalent to a direct factor of the p-localization of
SU(n + p)/SU(n) and the cohomology of B(2n +1,2n + 2p — 1) is

H*(B(2n +1,2n +2p — 1);Fp) = E(Z2n+1, T2nt+2p—1)
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with Plzo,41 = Ton4+2p—1-
From the above splitting, we get the following results immediately.

THEOREM 4.1. p annihilates all p—torsions in H,(Q%G; Z) for

p>5 G = Go,
p>11 G = F,, Eg,
p>17 G=E,
p>29 G = Fxg.

From now on we denote H,(Q%S™;F,) by £22(n) and ®]_, H.(Q25™; F,)
by Qa(n1,- -+ ,n,).

The cases of H,(Q2Gy;F,) and H.(Q%Fy;F,) follow from [4] and the
following homotopy equivalence,

Q28pin(7) =5 Q2G, x 0287, Q28pin(7) ~ Q250(7).

THEOREM 4.2. The homology of Q?G5 is
(a) H*(Qzaz;Fz) = E(Zl) &® Fz[ﬂ27]® IFQ[Q%ZZ'{) ra > O] & 92(11)
(b) H*(Qng;]Fg) = 92(3, 11)

THEOREM 4.3. The homology of Q%F} is
(a) H*(Q2F4; Fg) = E(21)® IFQ[,BZ?] ® 92(9, 11, 15, 23)

(b) H,(Q%Fy;F3) = E(21)® F3[B217] ® Q2(11,15,19, 23).

COROLLARY 4.4. For primes p = 2,3, p annihilates all p—torsions in
H*(QZG; Z) for G = GQ,F4.

Proof. We consider the Bockstein spectral sequence converging to
H.(Q?G2; Z) /torsion ® Fy with E; = H,(Q2?Gq;F2). With the first
Bockstein differentials, we have Ey = FE(z1,29). Hence there is no
higher differential, so that F2 = FE.,. So 2 annihilates all 2-torsions
in H,(Q2%G2;Z). For p odd primes, we also have E; = E(z;,29) and
E, = E,. Note that H,(G2;Q) = E(zs,211). Similar proof works for
G = Fy. |

We recall the following theorem in [5].
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THEOREM 4.5. The homology of the double loop space of Eg, E; and
Eg, are as follows:

(a) Hi(Q*Eg;F2) = E(21)®F; [8°Q27] ®(Q,50(E(QS 27) ®F2[Q%262]))
®Q2(11) 15) 23)7 where /83Qil+3z7 = Qg’zﬁ% a2 07
H.(Q%Es;F3) = E(21) @F3(216] ® (®,50(E(Q3217) ® F3[BQ5 T 217]))
®£2(9,11, 15,17, 23).

(b) H.(Q? Er;F2) = E(21)® Fy [B231]® F2[Q¢23 : a > 0])
®8(11, 15,19, 23,27, 35),
H.(QE7;F3) = E(21)® (Qg5¢(E(Q3217)® F3[62Q5 ™ 217]))
©Q2(11, 15, 23, 27, 35).

(C) H*(Q2E8;]F2) = E(.’El) ® E(Zlg) & IFQ [ﬂZ31,,8255]
®(Q >0 F2 [Qf 231, QF 255])
®22(23,27, 35, 39,47, 59),
H.(QEg;F3) = B(21)8F3(6253) (@, 0 (E(Q$ 253) OF3[8Q5 T 253]))
©0,(15, 23,27, 35, 39, 47, 59),

H.(QEs;F5) = E(21)®F5[8240]@(® 0 (E(QF 220) ®F5 Q4 249]))
©0(15, 23,27, 35, 39, 47, 59).

From the Bockstein spectral sequence, we get the following corollaries.

COROLLARY 4.6. The order of 2—torsions in H,(Q2%Eg; Z) is 2 or 23
and the order of 3—-torsions is 3.

Proof. We consider the Bockstein spectral sequence with Ey = H, (02
Eg; F3). With the nontrivial first differentials, we have

E; = E(21) @ F2[°Q727] ® (R ,50(E(Qi27) @ F2[3°Q1 1))
QRE (29, 213, 221).

Since there is no nontrivial second Bockstein differential, we have E; =
Es. With the third Bockstein differentials, we have E4 = E(z1, 27, 29,
213, 215, 221). Hence there is no higher differential and E; = E,. So
the order of 2-torsions in H,(Q?Es; Z) is 2 or 23. Next we consider
the Bockstein spectral sequence with £, = H,(Q?Es;F3). Then after
the first Bockstein differentials, we have Ey = E(z, 27, 29, 213, 215, 221 )-
So 3—torsions of H,(¥?Eg; Z) are of order 3. Note that H,(Es; Q) =
E(23, 29, 211, 215, 217, %23). O
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Similarly we get the following two corollaries from the Bockstein spectral
sequence.

COROLLARY 4.7. The order of 2-torsions in H,(Q*E7;Z) is 2 and
the order of 3—torsions is 3 or 32.

COROLLARY 4.8. The order of p—torsions in H,(Q?Eg;Z) is p for
p=2,3,5.

Now the remaining cases are as follows:

p:5, G=G27
5Sp§117 G=F47E67
5§p§17a G=E7a
7T<p<29, G = Es.

In order to get p-torsions of H.(Q2G;Z) for the above cases, we
should study p-torsions in H,(22B(3,2p + 1); Z).

THEOREM 4.9. For an odd prime p,

H.(Q°B(3,2p+1);F,) = E(Qf,-1)z1 : a > 0)®F,[82Q}, 21 : a > 2)).

Proof. First we compute H*(QB(3,2p + 1);F,). In the Eilenberg
Moore spectral sequence converging to H*(Q2B(3,2p + 1); F,), we have

Ey = Torg«(8@.2p+1)%,) (Fp, Fp)
= F(U$3,U$2p+1).

Then it collapses at the Ey—term because E, is concentrated on even
degrees. From the Steenrod operation on z3 and the Cartan formula,
we have

(Vpi (03)) = Ypi (0T2p+1)-
So the element 7,:(cx3) generates a truncated polynomial algebra of
. . 2
height p* and H*(2B(3,2p + 1);F,) = ®@i>0(Fp[vps (y2)]/ (v (2)7))-
Now we consider the Eilenberg—Moore spectral sequence converging
to H.(Q2B(3,2p + 1);F,),

E? = Extyg-B2p+1)¥,) Fp, Fp)
= E(zppa—1:02>0) @ Fplzope+2_5 1 a > 0]



160 Younggi Choi and Seonhee Yoon

and it collapses at the E?-term by bidegree reason. If we consider
the Serre spectral sequence corresponding to the fibration 2252 —
Q2B(3,2p + 1) — Q258%P+1 we have

E? = ®ux0(B(Q},_ 1 top-1) @ Fp[BQL 12p-1])
®(®az0(B(Q, 1)) @ FplBQ7 1))

where H.(Q2S%1Fy) = ®ax0(B(Q%,_1ytan-1) ® FplBQL ) t2n1])-

Then there are nontrivial differentials d(Q?‘p_l)Lgp_l) = ,BQ?:_ll)Ll for
a > 0. Hence by the Bockstein lemma, ,BzQ[(L:_zl)l,l = ﬁQ‘(’:_ll)Lgp_l. So
E% = E(Q(-1)t1:a = 0) ®1Fp[ﬁ2Q‘(1:_21)L1 ta>0.

Hence we have the conclusion. O

COROLLARY 4.10. p? annihilates all p—torsions in H,(Q?B(3,2p +
1); Z) for an odd prime p.

Proof. We consider the Bockstein spectral sequence for an odd prime
p with E; = H,(Q?B(3,2p + 1);F,). Since there is no first Bockstein
actions, we have F; = E,5. After the second Bockstein differentials,
we have that E3 = E(¢1,Qp-1)t1) and E3 = E. So p-torsions of
H.(92B(3,2p + 1);F,) are all of order p. a

From the above result, we can determine p-torsions of H,(Q?G;Z)
for the following cases.

COROLLARY 4.11. p? annihilates all p—torsions in H,(Q*G;Z) for
the following cases:

p=5, G=G2,
5Sp311> G=F47E6:
5<p<17, G=Ey
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