J. Korean Math. Soc. 39 (2002), No. 1, pp. 137-148

HAUSDORFF INTERVAL VALUED FUZZY FILTERS

P. V. RAMAKRISHNAN AND V. LAKSHMANA GOMATHI NAYAGAM

ABSTRACT. The notion of Interval Valued Fuzzy Sets (IVF sets)
was introduced by T. K. Mondal. In this paper a notion of IVF
filter is introduced and studied. A new notion of Hausdorffness,
which can not be defined in crisp theory of filters, is defined on IVF
filters and their properties are studied.

Introduction

The concept of fuzzy sets was introduced by Zadeh [5]. The theory of
fuzzy filters has been studied in [1], [3], et al. Interval valued fuzzy sets
are introduced and studied in [4]. In this paper the notion of interval
valued fuzzy filter (IVF filter) is defined and studied in Section 2 and a
new notion of Hausdorffness on IVF filters is introduced and studied in
Section 3.

1. Preliminaries
Here we give a brief review of preliminaries.

DEFINITION 1.1 ([4]). Let D be the set of all closed subintervals
of the interval [0, 1]. Let X be a given nonempty set. A function
it : X — D is called an interval valued fuzzy set (briefly IVF set) on X.
Singletons {a} in [0,1] are also considered as closed subintervals of the
form [a, a).

NoOTE 1.1. For each z € X, ji(x) is a closed interval [i"z, iV (z)] and
if @ € [0,1] then @ is an IVF set defined by a(z) = [a,a] for all z € X.

Received October 15, 2000.

2000 Mathematics Subject Classification: 54A40.

Key words and phrases: IVF sets, IVF filter, Hausdorff IVF filter, convergence
IVF filterly, IVF filter continuous, IVF filter open, quotient IVF filter, product IVF
filter.

The second author is supported by a fellowship of CSIR, INDIA.



138 P. V. Ramakrishnan and V. Lakshmana Gomathi Nayagam

DEFINITION 1.2 ([4]). Let & be an IVF set on X. Then supp i =
{x € X | iY(z) > 0}. An IVF point is an IVF set which has singleton
support.

DEFINITION 1.3 ([4]). Let ji, 7 € DX. Then
(i)ﬁ:17=>/1L(ac) L()and,u()zﬂ()forallxeX
(i) & C 7 = p*(z) < 7 (z) and Y (z) < 9V(z) for all z € X.
(iii) The complement fi¢ of i is defined by ii°(z) = [1—iY (z), 1— ik (2)]
for all z € X.

Let A be an indexed family of IVF sets. Then

(3) (Viea )(z) = [supze afi(z),supze 4 A (2)].
(b) (Meaft)(z) = [infac afit(z), infzec afi¥ ().

NoTE 1.2 ([4]). Let f : X; — X5 be a map. Let i € DX1 be an
IVF set of X1 Then f(ii) is an IVF set of Xy defined by f(i)(y) =
[UPae 1) (@), b -1y V()] for all y € Xa and £()(y) = 0,0
if f7'(y) is empty. Let & be an IVF set of X,. Then f~1(7) is an IVF
set of X; defined by f~1(#)(z) = [pX(f(x)), Y (f(z))] for all z € X;.

DEFINITION 1.4 ([4]). Let f: X — Y be a map. An IVF set [ is
said to be f - invariant if f(z) = f(y) = i(z) = a(y).

THEOREM 1.1 ([4]). Let f : X = Y be a function. Then

o) =|[f l(y)]c for all 7 € DY,
(1 [f ]CCf foraﬂuEDX
N Cih=f~ (Vl) C f~Yirn), where i,y € DY,

fa C M2 = f(fi1) C f(fi2), where fi1, fiz € D,
v) f(f~Y(®)) C v for all v € DY,
(vi) & C f7A(f(R)) for all ji € DX,
(vii) Let f : X — Y and g : Y — Z be maps. Then (go f)~'(7) =
fYg7* (%)) for all ¥ € DZ, where go f is the composition of g
and f.
NOTATION. Let X = {z1,22, -+ ,2,}. Then i = ([a1, 1], [az,b2],- -,

[an,bn]) denotes an IVF set of X such that X (z;) = a; and ¥ (z;) = b;
forall:=1,2,---,n
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2. IVF filters

DEFINITION 2.1. A collection F of interval valued fuzzy sets is said
to be a fuzzy filter of IVF sets or an IVF filter if

(Hogr

(2) If f, v € F, then fAD € F

3)If s € F,and v > 1, then 7 € F.

DEFINITION 2.2. A collection B of interval valued fuzzy sets is said
to be a base for an IVF filter if

(1) 0 ¢ B.

(2) 1,7 € B =35 € Bsuch that ¥ < i AD.

DEFINITION 2.3. A collection S of IVF sets is said to be a subbase
for an IVF filter F if the finite intersections of members of & forms a
base for F.

THEOREM 2.1. Let F be an IVF filter on X. Let Y C X. Then F|Y
is an IVF filter on Y, if no element of F vanishes on Y.

Proof. (i) Since no element of F vanisheson Y, 0 & F | Y.

(ii) Let 2 | Y, 9 | Y € F| Y. Clearly, (AAD) | Y =4 | YAD|Y. Since
F is an IVF filter we have (1AD) € Fand hence f | YAD |Y € F|Y.

(iii) Let i | Y € F|Y. Let # € DY such that # > ji | Y. Choose
% € DX such that 5(z) > ju(z) for all z € Y and 7(z) = #(z) for all
z € Y. Clearly, ¥ € DX such that ¥ > ji with 4 | Y = #. Since i € F
and F is an IVF filter, it follows ¥ € F and hence ¥ | Y =0 € F |Y.
Therefore F | Y is an IVF filter on Y. O

THEOREM 2.2. (i) Let A be any indexed family of IVF filters on X.
Then

(a) Nrea is also an I'VF filter.

(b) Urea is also an IVF filter if A is directed family of IVF filters
under inclusion and hence Ur¢ 4 is also an IVF filter if A is totally
ordered under inclusion.

(ii) Let B1,B2 be two IVF filter bases. Then Fry C Fgo if and only if
for all i € By, there exists U € B 5 such that v < [i.

Proof is easy as in crisp setup.

THEOREM 2.3. Let f: X — Y be a map. Let F be an IVF filter on
X. Then f(F) ={f() | p € F } forms a base for an IVF filter on Y.



140 P. V. Ramakrishnan and V. Lakshmana Gomathi Nayagam

Proof. We know that f(ii)f(z) = SUPgef1(z) gL (z) and f(R)Y(2) =
SUP,e 10,y AY ().

(i) Clearly, f(@1)Y(y) # 0 for at least one y € Y. Otherwise, iU (z) =
Oforallz € f71(t) fort € Y. So iY(x) = 0 for all x € X and hence
0 € F, which contradicts IVF filterness of F. Therefore f(ji) # 0 and
so 0 ¢ f(F).

(ii) Let f(@), f(#) € f(F). Since i,v € F, it follows g AU € F.
We now claim that f(i A7) < f(i) A f(7). We have to prove that

FpADYz) < f(R) A f(u)(z) for all z € Y. First, observe that f(ji A
M) = Supsey o min(it (), 72(x)). Clearly, min(i(x), 72(a) <
gL (x) and min(il(z), ¥L(zx)) < ( ). Hence sup min (% (z), 7¥(x))
< sup ji’(z) and sup min ([LL( ) L(g )) < sup #*(z). Hence sup min
(" (z), 7*(z)) < min (sup A (z), sup o™ (z)) = (1) Af ()" (2) for all
z € Y. Similarly, f(i A 7)Y (2) < f(ii) A f(7)V(2) for all z € Y. Hence
the claim is proved. Consequently, f(F) forms an IVF filter base. [

1
a,
L

THEOREM 2.4. Let f: X — Y be an onto map. Let G be an IVF
filter on Y. Then f~Y(G) = {f~'() | it € G} forms a base for an IVF
filter on X.

Proof. We know that f~1(2)f(z) = af(f(z)) and f~ 1 (@)V(z) =
BY(f(x))-

(i) Clearly, f~1()V () # 0 for at least one z € X. For, if iV (f(z)) =
0 for all z € X, then by surjective of f, we have iV(2) =0forallz €Y.
Hence ji = 0 € G, which contradicts G is an IVF filter.

(i) Let /~1(2), f~1(7) € f~1(G). We claim that () A f~1(5) =
Y@ A D). Now

R A @) = min{f N (B) (=), 71 (0) (2)}

Similarly, [f71(#) A f71(@#))Y(2) = f~ Xz A7)V (2). Since G is an IVF
filter, we have fiA¥ € G and hence f~Y(Z)A f~1(D) € f~YG). Therefore
~1(G) forms a basis for an IVF filter. O

DEFINITION 2.4. A map f : (X,F1) — (Y,F2) is said to be IVF
filter continuous if for every i € Fo, f~1(i1) € Fi.
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EXAMPLE 2.1. Let X = {a,b,c} and Y = {z,y,z}. Let By =
{([a1,az2],]a1, a2, [b1,02])} and B o = {([a1,a2), [b1,b2], [c1,c2])} be IVF
filterbases on X and Y, respectively. Let F1 and F2 be the IVF filters
generated by B; and By. Let f: X — Y be a map defined by a — =z,
b z and ¢ — y. By definition, f~1(B3) = B; and hence f is IVF filter
continuous.

NOTE 2.1. Let f: (X,F;) — (Y, F3) be a constant function. Then
f need not be IVF filter continuous.

EXAMPLE 2.2. Let X = {a,b,c} and Y = {e, f,g9}. Let By =
{([r1,72]s [r1, 72}, [r1,m2]) } and B2 = {([r1,72], [s1, s2], [t1, t2]) }, where s; <
r;. Let F; and Fy be IVF filters generated by B; and Bs, respec-
tively. Define h : X — Y by h(z) = f for all 2 € X. Choose y; such
that s; < y; < r;. Clearly, i = ([r1,72], [y1, 2], [t1,t2]) € F2. But
R7Y(@) = ([y1,v2), [v1,v2], [v1,v2]) & F1. Hence h is not IVF filter con-
tinuous.

The following note is an immediate consequence of definitions.

NoTEe 2.2. (i) Let f,g be IVF filter continuous maps. Then so is
f o g, whenever the composition is defined.

(ii) The identity function on an IVF filter is IVF filter continuous.

(iii) Let f : (X1,F1) — (X2,F2) be an IVF filter continuous map.
Let Z C X; such that no member of F; vanishes on Z. Then f | Z :
(Z,F1] Z) — (X2,F) is also an IVF filter continuous function.

THEOREM 2.5. A map f : (X1,F1) — (Xo,F2) is an IVF filter
continuous if and only if for every IVF point p in X1 and ¥ € F» such
that f(p) € v, there exists i € F1 such that p € i and f(§i) < D.

Proof. Let f be an IVF filter continuous function. Let 5 € DX be
an IVF point. Let supp p = {z}. Let U € F, such that f(p) € v.
We know that f(p)V(z) = pY(z) if 2 = f(z) and f(P)V(2) = 0 if z #
f(z). By filter continuity, f~1(9) € F;. Clearly, f‘l(D)L(x) > pl(x)
and f~1(#)Y(x) > pU(z). Hence p € f~1(#). By (v) of Theorem 1.1,
FUf~YD)) < 0. If o = f~1(9), x satisfies our requirements.

Conversely, let 7 € F5. Let p € f~1(D). Clearly, f(p) € f(f~1(P)) <
v. Hence by hypothesis, there exists fi, € F; such that p € fi, and
f(ip) < . By (iii) of Theorem 1.1, f~X(f(4p)) < f~1(¥). By (vi) of
Theorem 1.1, fp < f~}(f(fp)) and hence i, < f1(7). Since ji, €
F1,f Y(#) € F1. Hence f is an IVF filter continuous. O
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Now we generalize the definition of characteristic set of a fuzzy filter
F with respect to a fuzzy set u, CH(F) = {a € [0,1] | for all v € F, there
exists ¢ € X such that v(z) > p(z) + a} and the supremum of CH#(F) is
the characteristic value of F with respect to u in [3] as follows.

DerFINITION 2.5. Let F be an IVF filter. Let i be an IVF set.
Then the characteristic set of F with respect to fi is given by CA(F)
= {[a,b] € D | for all & € F, there exists z € X such that 7 (z) >
pl(z) + a,5Y(z) > pY(z) + b} and A(F) = [supa,supb], where the
supremum is taken over all [a,b] € C#(F) is the characteristic value of
F with respect to fi.

THEOREM 2.6. Let f: (X1, F1) — (X2, F2) be an IVF filter contin-
uous function. Then CE(Fy) C C fB)(Fy) if i € DX is f-invariant.

Proof. Let [a,b] € CA(F1). So for every i € F, there exists x € X
such that #*(z) > if(z) + a and #Y(x) > pY(z) + b. To prove that
[a,b] € CFB)(Fy), let 4 € Fa. Clearly, f~1(3) € F1. Hence there exists
z € X such that f~1(%)E(z) > il (z) +a and f~1(F)V(z) > aY(z) + .
Hence 7%(f(x)) > i*(z) + a and 4Y(f(z)) > iaY(z) + b. Since [ is
f-invariant, f(z) = f(y) implies fi(z) = fi(y). Hence f(@):(f(x)) =
SUP,e f-1(f(x)) il (z) = pL(x) and similarly, f(2)V (f(z)) = i¥(x). Hence
FH(f(2)) > f(@)E(f(2)) + a and 7Y (f(2)) > ()Y (f(z)) + b. Hence
the proof is complete. O

DEFINITION 2.6. A map f : (X;,F1) — (Y,F2) is said to be an
IVF filter open map if for every i € Fy, f(ii) € Fo. In addition if
f is IVF filter continuous and 1-1, then f is said to be an IVF filter
homeomorphism.

NoTE 2.3. Cf(M(F,) C CA(F;) holds if f : (X1, F1) — (Xa,Fo) is
an injective IVF filter open map.

Proof. Let [a,b] € Cf@(F,). Let # € F1. Clearly by IVF filter
openness of f, f(¥) € Fa. Hence there exists y € X such that

1) f@ W > W) +a and FO)7(@) > F(BD7 @) +0.

Clearly, f~'(y) is not empty, otherwise f(#)X(y) = 0. Since f is an
injective map, clearly f~1(y) is singleton. Hence f(#)(y) = oL (f~1(y))
and so by (1), #*(f~'(y)) > A*(f'(y)) +a and similarly, 7Y (f~'(y)) >
2Y(f~1(y)) + b. Therefore [a,b] € C*(F1). O

The following corollaries are immediate.
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COROLLARY 2.1. If (X1, F1) and (X2, Fo) are IVF filter homeomor-
phic, then CA(F1) = CFB) (7).

COROLLARY 2.2. Let f: (X;,F1) — (X2, F2) be a f-invariant IVF
filter continuous map. Let i € DX1. Then ¢#(F1) < /P (F,).

CoROLLARY 2.3. If f : (X1, F1) — (Xo,F3) is an IVF filter homeo-
morphism, then c#(F;) = f(B)(F,).

3. Hausdorff IVF filters

DEFINITION 3.1. Two fuzzy sets u,v € IX are said to intersect if
p(z) + v(z) > 1 for some z € X. Otherwise y and v are said to be
disjoint.

Now we extend the above definition to IVF sets as follows:

Two IVF sets i, # € DX are said to intersect at z € X if 3X(z) +
7Y (2) > 1 or iY(z) + #%(z) > 1. Otherwise i and  do not intersect at
z. i and 7 are said to be disjoint if /i and ¥ do not intersect anywhere.

NoTE 3.1. In crisp theory, two disjoint members cannot be members
of a filter. Hence one can not speak about Hausdorffness on a filter. But
in fuzzy setup, we have a definition of intersection such that two disjoint
members can be members of a fuzzy filter.

For example, Let X = {a,b,c} and B = {(z0,3/4, 20), (3/4,v0, 20),
(w0, 10,3/4), (0,0, 20)}, where zg, Yo, 20 € (0,1/4]. Clearly, B forms
a base for a filter. Let F be the fuzzy filter generated by B. Under the
above definition of intersection, F contains members which are disjoint.

So one can speak about Hausdorffness on fuzzy filters and Hausdorff-
ness can be extended as follows.

DEFINITION 3.2. An IVF filter (X, F) is said to be a Hausdorff
IVF filter if for all pair z,y € X such that = # v, there exists fi, 7 €
F such that gY(z) > 1/2, #Y(y) > 1/2 and % (z) + #Y(z) < 1 and
AV (z) + vl (z) <1forall z € X.

EXAMPLE 3.1. Let X = {a,b,c} and F be the IVF filter generated
by B = {([$0,$1], [y013/4]7 [ZO,ZI])a ([$073/4]a [y07y1]7 [20,21]), ([.’170,1'1],
[y07yl]; [2073/4])7 ([.’L'(),.’L’l], [yo:ylL [20,21])}, where o, Yo, 20 € (07 1/4)
and zo +z1 < 1L,y0 +y1 < 1,20+ 21 < 1. Clearly, (X, F) is a Hausdorff
IVF filter.
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DEFINITION 3.3. A sequence {z,} of (X,F) is said to converge
filterly to « if for every u € F such that pu(z) > 1/2, there exists
an integer N such that p(z,) > 1/2 for all n > N, or equivalently,
u(zy) <1/2 for alln > N.

The above definition is extended in IVF filter as follows.

DEFINITION 3.4. A sequence {z,} of (X,F) is said to converge IVF
filterly to z ( {zn} —uwys x ) if for every ji € F such that gY(z) > 1/2,
there exists N such that (i)Y (z,) < 1/2 for all n > N, or equivalently,
il (z,) > 1/2 for all n > N.

THEOREM 3.1. Let (X,F) be a Hausdorff IVF filter. Let Y C X.
Then (Y, F | Y) is also a Hausdorff IVF filter if no element of F vanishes
onY.

Proof. By Theorem 2.1, (Y,F | Y) is an IVF filter on Y. Now we
prove that (Y, F | Y) is Hausdorff. Let y;,y2 € Y such that y1 # yo.
Since Y C X and (X,F) is Hausdorff, we have fi,7 € F such that
iV (1) > 1/2, 99 (y2) > 1/2, i*(2) + 9Y(2) < 1, and 47(z) + 7(2) < 1
for all z € X. Hence (& | Y)V(y1) > 1/2, (7 | Y)V)(y2) > 1/2, (i |
Y)2) + (7 | Y)V(2) <1,and (i | V)E(2) + (7 | Y)V(2) < 1 for all
z €Y. Hence (Y, F | Y) is also a Hausdorff IVF filter. O

THEOREM 3.2. In a Hausdorff IVF filter (X, F), any sequence of
points of X converges uniquely if it converges IVF filterly.

Proof. Let {z,} be a sequence of X. Assume that {z,} converges
IVF filterly to x and y of X such that z # y. Since z,y € X such that
z # y and (X, F) is Hausdorff, we have fi, 7 € F such that ¥ (z) > 1/2,
Y (y) > 1/2 and

pl(z)+0Y(2) <1,iY(2) + o5 (2) < 1for all z € X.

So, {zn} —iws = iY(z,) > 1/2 for all n > Ny, for some N;. Similarly,
{zn} —ivf y = P*(zn) > 1/2 for all n > Np, for some Ny, and hence
Y (x,) > 1/2 for all n > Na, for some Ns.

Clearly, for all n > N = max{Ny, No}, we have ji*(z,) + oY (z,) > 1,
a contradiction. O

THEOREM 3.3. Let f : (X1,F1) — (X2,F2) be a bijective IVF
filter open map. Then (X5, Fs) is a Hausdorff IVF filter if (X1,F1) is a
Hausdorff IVF filter.
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Proof. Let y; # ya € Xo. By hypothesis there exist unique z; # z2 €
X such that f(z1) =y and f(z2) = y2. Since z1 # z9 and (X1, F1) is
HausdorfF, there exist ji, 7 € Fy such that gU(z1) > 1/2, 7Y (x3) > 1/2,

BE(2)+9Y(z) <1 and jF(2)+9Y(z) <1forall z € X;.

Since f is IVF filter open, f(ii), f(?) € F3. Clearly, f(i)V(y1) =
aY(z1) > 1/2 and f(7)7(y2) = #Y(22) > 1/2. Suppose f(i)"(z) +
f(®)Y(2) > 1 for some z € X5. By hypothesis there exists unique z € X
such that f(z) = 2. Hence i’(z) + #Y(x) > 1, a contradiction. O

NOTE 3.2. We cannot drop any one of the condition in the above
theorem.

THEOREM 3.4. Let f : (X1, F1) — X2 be a bijective map. Let F =
{ii € DXz | f~Y(7) € F1}. If (X1,F1) is a Hausdorff IVF filter, then
(X2, F) is a Hausdorff IVF filter.

Proof. We first prove the following lemma.
LEMMA. Let f : (X1,F1) — X2 be a surjective map. Then F =
{ € DX2 | f~Yj1) € F1} is an IVF filter on X,.

Proof of the lemma. (i) Clearly 0 ¢ F. Otherwise f~1(0) = 0 € F;
contradicts 0 ¢ F;.

(ii) Let &,7 € F. Hence f~(i), f~1(¥) € Fi, and so f~1(i1) A
F~Y#) € F1. Clearly, f~Y)Af~1(D) = f~Y(aAP) and hence GAD € F.

(iii) Let & € F and ¥ > fi. Since i € F, f~1(i1) € Fi. Clearly,
f7X(®) > f~*(@) by (iii) of Theorem 1.1, and hence f~1(#) € F;. Hence
veF. a

DEFINITION 3.5. The IVF filter defined in the above lemma is called
as Quotient IVF filter determined by the surjective map f.

Proof of Theorem 3.4. Let f: (X1,F1) — X3 be a bijective map. Let
F = { € DX2 | f~Y(1) € F1}. To prove (X5, F) is a Hausdorff IVF
filter, it is enough to prove that f is an TVF filter open map. Let 7 € F.
Since f is bijective, f~1(f(7))*(z) = o¥(z) and f~1H(f (7)Y (z) = PV (x)
and hence f~Y(f(9)) = v € F;. Hence f is IVF filter open. Hence by
Theorem 3.3, (X2, F) is a Hausdorff IVF filter. O

DEFINITION 3.6. Let (Xa, F,) be an indexed family of IVF filters.
Let X =[] X4. Now the product IVF filter F = IL.F,, is the smallest IVF
filter for which the projection maps p, : X — X, defined by p,((z4)) =
z,, are IVF filter continuous.
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THEOREM 3.5. Let (Xa,]-' ) be an indexed family of IVF filters. Let
X =[[Xa. Then S = {po '(fia) | fia € Fu} forms a subbasis for the
product IVF filter.

Proof. Clearly, 0 ¢ S. Now we prove that the IVF filter F (S)
generated by S is the smallest IVF filter in which all projection maps
are IVF filter continuous. Let Fy be any IVF filter in which all pro-
jection maps are IVF filter continuous. Let i € F(S). Hence there ex-
ist pa, _1(ﬂa1)7pa2—1(ﬁa2)) cre apan‘l(/]an) € S such that pal—l(ﬁal) A
Doz Hfiaz) A+ A Pa Hfia,) < fb for some fia, € Fo, (i = 1,2,..,n).
Clearly, by IVF filter continuity of pa,, pa; ! (fia;) € Fo and hence ji €
Fo. Hence the theorem is proved. 0

NoTE 3.3. Let (X1, F1) and (X3, F3) be IVF filters. Let X
X1 x X5. Then the product IVF filter F; x F;, is generated by B =
{ExplpeF, veF}.

Proof. First we check B forms an IVF filter base.

(i) We know that (i x D)U(xl,m2) = mm{u (z1), #Y(x2)}. Since
ner andl/efg,wecanseeu#OandV#Oandhence,u (z )#O,
for some z € X1 and 7Y (y) # 0 for some y € X,. Hence (i x &)V (z,y)
= min{iY (z), #Y (y)} # 0 and hence ix & # 0, for every i € Fy, & € Fo.
Hence 0 ¢ B.

(ii) Let fi1 x 01, fizg X U3 € B. Then we have (fiy X 1) A (fiz X )
= [i1 A fia X Py A Ug: indeed,

[(f1 x 1) A (fiz x D2)] (2, y)
= min{(fiy x 7)%(z,p), (B2 x i2)E(z,y)}
= min{min(if (z), 7 (y vy

f

)), min(fi5 (), 7 (v))}
= min{if (z), 7 (), i5 (), 75 (y)}
min{min(fi{ (z), i (z)), min(7f (z), 7 ()}
= (@i A fiz) x (&1 A 22)] (=, ).

]
Similarly, (41 x #1) A (B2 X #)]Y (z,) = [(f A i) x (71 A 2)]Y (=, ).
Hence B forms an IVF filterbase.

We know that S = {p;™*(ji;) | fi; € F;} forms a subbasis for the
product IVF filter. Let D = finite intersections of members of S. Clearly,
pr (@) A () A AP (fim) = p1 7 (la Afig A+ - Afim) € D, where
wi € F1,i=1,2,--- ,m. Similarly, p2_1(171)/\p2_1(172)/\- o Ape N iy) =
pg‘l(ﬂl/\ﬂ2/\---/\ﬁn) € D, where v; € F2, j = 1,2,---n. Now we claim
that p1~1(@) A p2~1(¥) = ji x . Clearly, [p;~ ( )/\p2 YN E (z,y)
= min{p; "1 (@) (2,9), p2 (7)2(z,9)} = min{it(z), P4} = (@ x
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)L (z,y). Similarly, [p172(8) A p2 D)V (z,y) = (& x 7)Y (z,y). We
know that py~1(fi) = i x I and py~*(#) = 1 x . Hence D = B. So the
product IVF filter F1 x Fo is generated by B = {i x 0 | i € F1,0 €
Fa}. O

THEOREM 3.6. Arbitrary product of Hausdorff IVF filters is Haus-
dorff IVF filter.

Proof. Let (X4, F,) be an indexed family of Hausdorff IVF filters,
let X = [ Xq, and let F = [[ F, be the product IVF filter in which
each p, @ (X, F) — (Xa, Fa) is filter continuous. We know that S =
{pa~ (fia) | fia € Fo} forms a subbasis for the product IVF filter.

To prove that (X, F) is Hausdorff IVF filter, consider © = (z4),y =
(yo) € X such that z # y. So we have at least one @ such that
zg # yp. Since (Xg,Fg) is Hausdorff IVF filter, there exist fig,7g €
Fp such that ﬁg(.’tg) > 1/2, ﬁg(yg) > 1/2 and ﬁé‘(25) + Dg(zﬁ) <
1 for every z3 € Xpg and /lg(zg) + ﬂé(Zg) < 1 for every zg € Xg.
Clearly, ps~'(fig) and ps~!(Pg) are members of S and hence elements
of F. Now pg~1(jiig)Y(z) = ﬁg(pg(:c)) = @Y (wg) > 1/2, and similarly
pa~ (95)Y (y) > 1/2. Now we claim that ps~1(fig)L (2)+ps (7)Y (2) <
1 for every z € X. Suppose that pg~1 (i) (2) + ps~* (D) (2) > 1 for
some z € X. By definition, ps™* (fig)*(2) +ps~ (7)Y (2) = 2 (ps(2)) +
ﬂBL(pg(z)) = ﬂé(Zﬂ) +/Zé(zg) > 1, where z3 € X3, a contradiction. Sim-
ilarly, ps~t(fg)Y (2)+ ps~'(¥5)L(2) < 1 for every z € X. Hence (X, F)
is a Hausdorff IVF filter. g

THEOREM 3.7. Let (X, F) be an IVF filter on X. Let R be an equiv-
alence relation. Let X /R denote the collection of all disjoint equivalence
classes. Let p be the identification map from X — X/R. Let Q(F) be
the quotient IVF filter on X/R determined by p. Then (X/R,Q(F)) is
a Hausdorff IVF filter if I € F x F and p is an IVF filter open map.

Proof. Let p(z) # p(y) € X/R. Hence z is not related to y. By
definition, 1g(z,y) = [1,1]. By hypothesis, 1g € F x F. So there exists
ji X 7 € Bsuch that i x 7 < 15.

We can choose fi x U such that (& x V) (z,y) > 0. For, Suppose
(i x 7)=(z,y) = 0 such that i x ¥ < 1g, i ( ) =0 or #X(y) = 0 or both
are zero. Choose fi; such that #1( z) = @l (2) if 2z # z and @f(z) > 0
and i¥(z) = fY(2) if z # x and @Y (z) > max{i¥(z), iV (z)}. Clearly,

fi1 > i and hence ,u1 € F. Similarly choose i € F. Clearly fiy x ¥y € B
such that (ji; x 1)%(z,y) > 0 and (fi; x &) < 1g.
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Sochoose/]xDeBsuchthat( x D)E(z,y) > 0 and (i x ) < 1g.
Define iz such that jif(z) = u L(z) if pL(z) > 1/2 or il(2) = 0 and
ji¥(2) > 3/4 otherwise and ji§ (z) = iV (2) f,aU( Yy>3/4or iY(z) =0
and ji¥ (z) = 7/8 otherwise. Clearly, fip > ji. Similarly, define 7 such
that oo, > . Since fi, v € F, jig, ¥ € F.

Since fi x ¥ < Ig, we have (i x 7)F(s,t) + 1%(s,t) <
(s,t). Clearly if s is related with ¢, then (fp X l/g)L( s,t)
(fiz x 79)V(s,t) = 0. So if s is related with ¢, then (fig X 72)(s,t
and if instead s is not related with t, then Igp(s,t) = [0,0] hence
(fig x o)E(s,1) + 1%(s,t) < 1, and (fiz x 2)Y(s,t) + 15(s, )
every (s,t) € X x X.

Since p is IVF filter open, we have p(ji2),p(P2) € Q(F). Clearly,
pi2)! (p(z)) = SUp,ep-tnia) il (2) > i (z) > 1/2, since by our choice,
iY (z) > 0. Similarly, p(2)Y (p(y)) > 1/2.

It is enough to prove that p(fi2)L (p(2)) + p(i2)V (p(2)) < 1 for all
2 € X. Suppose that p(fi2)L (p(20)) +p(2)V (p(20)) > 1 for some 2 € X.
So p(ji2) (p(20)) > 0 and p(#)Y (p(20)) > 0. Hence there exists z1 €
p~Y(p(z0)) such that jf(zp) > 0. Similarly there exists z3 € p~*(p(20))
such that 7Y (23) > 0. Since 21, 22 € p~L(p(20)), 21 is related with z5. We
have (fig X 7)Y (21, z2) > 0 and hence (fis x 72)Y (21, 22) + 1§ (21, 22) > 1,
a contradiction. Similarly, p(fi2)V (p(2))+p(2)*(p(2)) < Lforall z € X.
Hence the theorem is proved. O
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