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TOPOLOGIES AND INCIDENCE
STRUCTURE ON R"-GEOMETRIES

JANG-HwWAN IM

ABSTRACT. An R"-geometry (P", L) is a generalization of the Eu-
clidean geometry on R"™ (see Def. 1.1). We can consider some
topologies (see Def. 2.2) on the line set £ such that the join opera-
tion V : P* x P*\ A — L is continuous. It is a notable fact that in
the case n = 2 the introduced topologies on L are same and the join
operation V : P2 x P2\ A — L is continuous and open [10, 11]. It
is a fundamental topological property of plane geometry, but in the
cases n > 3, it is no longer true. There are counter examples [2].
Hence, it is a fundamental problem to find suitable topologies on
the line set £ in an R™-geometry (P™, £) such that these topologies
are compatible with the incidence structure of (P™, £). Therefore,
we need to study the topologies of the line set £ in an R™-geometry
(P™, L£). In this paper, the relations of such topologies on the line
set L are studied.

1. Introduction

We shall use P" to denote a topological space which is homeomorphic
to R™.

DEFINITION 1.1. Let n > 2. Let £ be a system of subsets of P™. The
elements of P™ are called points, and the elements of £ are called lines.
We shall say that (P", L) is an R™-geometry if it satisfies the following
axioms:

(1) The incidence structure (P", L) is a linear space, i.e., any two
distinct points p, g lie on a unique line pV g € L.

(2) Each line is closed in the topological space P™ and homeomorphic
to R.
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An R"-geometry (P™, L) is called topological if L is a topological space

and the join operation

ViP"xP"\A — L
is continuous, where A = {(p,p)lp € P"} is the diagonal. An R2-
geometry (P2, L) is called also R2-plane or a Salzmann-plane.

We start with some basic definitions and lemmas in general topology.
Let X be a topological space and (A )nen be a sequence of subsets of X.
Denote by lim inf A, the set of all limit points of sequences (a,)pen With
an € Ap, and denote by lim sup 4, the set of all accumulation points
of such sequences. The sequence (A;)ncn is Hausdorff-convergent to
A C X if and only if lim inf A,, = limsup A, = A (written by lim A4, = A
or 4, — A).

Hausdorff metric: Let i/ be the set of the non-empty closed subsets
of P". We define the metric on U by

§:U xU — R: (A, B) — sup{|d(z, A) — d(z, B)|e"4P?) |z € P"},

where d is the metric on P™ and p € P™. Then ¢ is a metric on Y. Let
(An)nen be a sequence in U and A € U. Then (A, )nen converges to A
in (U,0) if and only if lim A, — A ({4, Chapter 1.3]).

Let X be a set and 7 a topology of X. We use often the couple (X, T)
to denote the given topology on X. We need the following basic lemmas
which are well known.

LEMMA 1.2. Let Y be an arbitrary set, X a topological space, and f :
X — Y asurjection. Let 77 be the final topology on Y and the topology
T on 'Y be generated by the subbasis Y, = {f(U)|U is openin X}.
Then:

1) i € .

(2) Let T be a topology on Y. Then f: X — (Y, 7) is a continuous
open mapping if and only if Ty =7 =T5. That is, if f : X — Y
is a continuous open surjection, then the topology on 'Y is uniquely
determined.

(3) 1°, 2° countability and local compactness are invariant under con-
tinuous open surjections.

Let X be a topological space. It is well known that A C X is closed
if and only if together with any filterbase consisting of subsets of A it
contains all its limits. This shows that all the basic topological concepts
can be expressed by filterbases, that is, closed sets are characterized as
the notation of filterbase. Now, let us consider the two classes of spaces
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in which closed sets are characterized as the notation of sequence. A
topological space X is called a sequential space if a set A C X is closed
if and only if together with any sequence it contains all its limits. A
topological space X is called a Fréchet space if for every A C X and
every z € A there exists a sequence 1, Z3, ... of points of A converging
to z. Every 1° countable space is a Fréchet space and every Fréchet
space is a sequential space ([6, Chapter 1.6.14]). Every L*-space is also
a sequential space (Definition 2.7).

LEMMA 1.3. Let (X,71) be a sequential space and (X, 73) a topolog-
ical space. Let (xy) be an arbitrary sequence and z € X. Then

[(&n — 2 in (X, T1)) = (20 — 2 in (X, )] <= T; C F.

2. Comparison of some topologies on £

LEMMA 2.1. Let (P™, L) be an R™-geometry and let (L,) be a se-
quence in £ with limsup L, # 0. Then |limsup L,| = co.

Proof. [12, Lemma 2]. O

Generalizing [10], we introduce some topologies on the line set L.

DEFINITIONS 2.2. The final topology F on L is the largest topology
on L for which the mapping V : P* x P*\ A — L is continuous. The
open join topology OJ is generated by the subbasic elements O V Oz =
{pVqeLlpe 01,9 € Osp # q}, where O1,0, are open sets in P".
The open meet topology OM is defined by the subbasic sets Mo = {L €
L|L N O # 0}, where O is an open set in P™. The hausdorff topology H
is the induced topology of (U, §) on L.

The following results can be founded in [11, 31.19 Theorem]| for n = 2,
and for arbitrary n we can find similar results in [12, Theorem 7].

LEmMMA 2.3. Let (P",L) be an R"-geometry. Then F C OJ =
OM C H.

Proof. By Lemma 1.2, we have F C OJ. Let 01,02 be open in P".
Since O1 V Oy = Mp, N Mp, and Mp, = O; V O, hence we have
OJ = OM. If O is open in P*, then L\ Mp = {L € LILNO = B} is
H-closed. Assume that £\ Mp is not H-closed. Then there exists a
sequence (L,) in £\ Mo which converges to L € Mp. Choose a point
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a € LN O. Then there exists a sequence (a,) with a, € L, which
converges to a. For sufficiently large n € N, a, lie in O, a contradiction
to L, € L\ Mp. Consequently, OM C H. O

COROLLARY 24. Let (P™, L) be an R"-geometry. Then:

(1) Let T be a topology on L. Then the join map V : P* X P*\ A —
(£,T) is continuous open if and only if T = F = OJ(= OM).

(2) (L,0M) is a Ty-space and 2° countable.

(3) If F = OJ, then the line space (L,0.J) is a locally compact space.

Proof. (1) and (3): By Lemma 1.2, the proofs are clear.

(2) Let Ly,Ls be two distinct lines. Choose a point ¢ € L; with
a & Ly. Since P™ is regular, there is an open nbd O of a such that
O N Ly = (. Hence, My is an open nbd of L; not containing L. Since
P™ has a countable basis and a countable union of countable sets is
countable, (£,0M) is 2° countable. O

LEMMA 2.5. Let (P™, L) be an R™-geometry. Let (L) be a sequence
in £L and L € L. Then L, — L in OM(= OJ) if and only if L C

liminf L.

Proof. [12, Theorem 7). a

DErFINITION 2.6. Let X be a set. A sequential convergence A on X
is a relation between sequences (z,) of elements of X and elements x of

X, denoted x, 2, x, such that

(L1) If z, = « for all n, then z, LI

(L2) If z,, 2, z, then z,,, 2, 2 for every subsequence (z,,,) of (z,).

We say that (x,) converges to z if 2z fAisa sequential con-
vergence on a set X, then one can generate a topology by taking as the
family of closed sets all sets containing together with any convergent
sequence the limit of this sequence; this topology is called the sequential
topology induced by the limit operator A. Let T* be the induced topol-
ogy on X by the sequential convergence A\. Then we have the following
implication:
A T

Ty — T = Ty — .
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DEFINITION 2.7. Let A be a sequential convergence on X such that
(L3) If a sequence (z,) does not converge to z (i.e., it is false that

Tn 2, x), then it contains a subsequence (z,,) such that no
subsequence of (z,,,) converges to z.

(L4) If z, 2, z1 and z, 2, Z9, then 1 = x4.
Then the sequential convergence A is called an L*-convergence and the
pair (X, T?*) an L*-space.

We note that every L*-space with the sequential topology is a T3-

space. The following basic theorem relating sequential convergence and
topology was proved by J. Kisyriski [7]: for a sequence (x,) of points
A
of an L*-space with the sequential topology, x, I, & if and only if
A . L. .
T, — x, l.e., that the convergence a posterior: is equivalent to the

convergence a priori.

The following sequential convergence on the line set £ was defined by
D. Simon in [12, 1.2.1].

DEFINITION 2.8. Let (P", L) be an R™-geometry. We define on the
line set £ the sequential convergence to be

Ly~ L= VY(L,,): ©#tmsupL,, CL.

Then * is an L*-convergence in [12, 1.2.1, Lemma 3|. Let T™ be the
sequential topology on £ induced by the L*-convergence x.

LEMMA 2.9. Let (P", L) be an R"-geometry. Let (L,) be a sequence
in £ and L € L. Then:

(1) If L, — L in (L,T*), then L, — L in the final topology (L, F').

(2) If L, — L in (L, H), then L, — L in the sequential topology
(L, T™).

3) FCT*CH.

(4) If OM =T*, then OM =T* = H.

Proof. (1) Let (Ly,) converge to L in (£, T*). Assume that (L,) does
not converge to L in (£, F'). Hence there exist an open nbd U of L and
a subsequence (L, ) such that [U,, {Ln,,}] N U = 0. Hence we have
0 =V ([Unp{Ln, ) NU) = [Un,,(Lp,, X Lp,, — A)] NV~YU). Since
0 # limsup Ly, C L, choose a point a € limsup L,,, C L. Hence there
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exists a sequence (ay,,, ) with a,, € L
have also

nm, Such that a, — a. We
a € liminf ank C lim sup ank.
By Lemma 2.1, choose a point b € lim sup ank with a # b. Hence there
exists a subsequence (Ly,,, ) of (Ln,,) such that a,b € liminf L,,, . We
q q
get also

(a,b) € liminf L, xliminfL,, —ACLxL-ACVY(U).
q q

Since V~1(U) is open in P™ x P® — A and a # b, choose two disjoint
open sets V1, V5 in P™ such that (a,b) € Vi x Vo € V™I(U). We get

0 # [Unp, (Ln, XL, —D)N (V2 X V2)C[Un,, (Lny XL, =A) V),

this leads to a contradiction. Hence (L,) converges to L in (L, F).

(2) Assume that (L,) converges to L in (£, H). Then for all sub-
sequence (L, ), we have L = liminf L, = limsup L, . Hence (L)
converges to L in (£, T*).

(3) By Lemma 1.3, the assertion is obvious.

(4) It is sufficient to show that if the sequence (L,) converges to L
in (£,0OM = T™), then the sequence (L) converges to L in (£, H). By
Lemma 2.5 and Definition 2.8, we have L C liminf L, C limsup L,, C L,
hence (L,) converges to L in (L, H). a

LEMMA 2.10. Let (P™, L) be an R"-geometry. Let F = OM. Then
the following properties are equivalent:
(1) (£,0M) is a Ty-space.
(2) If a sequence of lines (L) converges to L in OM, then the sequence
(Ly) converges to L in the sequential topology T*.

Proof. (1) = (2). Assume that a sequence (L,) converges to L in
OM. Let (L,,) be a subsequence of (L,). By Lemma 2.5, we have
L Climinf L,, C limsup L, ,, in particular, 0 s limsup Ly, . Next we
will show that limsup L,,,, C L. Let a € limsup Ly, , then there exists
a sequence (anmk),anmk € Lp,, such that a,, — a. Assume that
a ¢ L. Choose a point b € L. Since L C liminf L, , , there is a sequence
(brny )b, € Lny,, such that by, —— b. Since ' = OM, the join
operation is topological, hence we have an,, V bn,, — aVbin OM.
On the other hand, we have Ly, =an,, V bnmk — L in OM. By the
assumption (1), we get L = a Vb in OM, this leads to contradiction,
hence a € L.
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(2) = (1). Let a sequence of lines (L,) converges to some two lines
L and L; in OM. Since L C liminf L, C limsupL, € L and L; C
liminf L, C limsupL, C L;, we get L1 = L. Hence, (L,0M) is a
Ty-space. O

COROLLARY 2.11. Let (P™,L) be an R™-geometry. Let F = OM.
Then:
(1) (£,0M) is a Ty-space if and only if OM = H = T*.
(2) If F = H, then the line space (L, H) is a locally compact hausdorff
space.

Proof. (1) Assume that OM = H, then it is clear that the space
(L,0M) is a Ty-space. Conversely, assume that (£,0OM) is a Th-space.
Let U be open in the hausdorff topology H. We have to show that
L — U is closed in OM. Assume that £ — U is not closed in OM. Since
(L,0M) is 2° countable, there exists a sequence (L,) in £ — U which
converges to L € U in OM. By Lemma 2.10, (L,,) converges to L in the
sequential topology T*. Therefore, (L,,) converges to L in the hausdorff
topology H. For sufficiently large n € N, we have L,, € U, this leads to
a contradiction. Consequently, H C OM. Hence we have F = OM = H.
By Lemma 2.9 (3), we have also F = OM =T* = H.

(2) By Lemma 1.2, the proof is obvious. O

Now we want to consider two topologies on the line set £. Let H
be the set of all parametrizations of lines, i.e., H consists of all maps
f: R — L C P" such that f is a homeomorphism onto some line
L ¢ L. Endow H with the compact-open topology and the point-open
topology respectively (compare Dugundji XII.1 [5]).

DEerFINITION 2.12. The COT topology on L is the quotient topology
induced by the compact-open topology on H obtained by identifying
maps which have the same image. The POT topology on L is the quotient
topology induced by the point-open topology on H.

Let I : R — L be a homeomorphism onto some line L € L, that is,
I € H. Then we use [ | : H — H/ ~: I — [l] to denote the quotient
mapping from H to H/ ~ . We define a mapping from H/ ~ to L
tobe ¢ : H/ ~— L : [l] — ¢([l]) = I(R). Let us denote by n the
composition of two mappings [ | and ¢, that is, n(l) = ¢([l]) for | € H.
We also call the mapping 7 the quotient mapping from H to L. From
now on, we shall use only the closed intervals I = [a, b], where a,b are
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not necessarily distinct. The family of all sets (I,V), where I C R is
a closed interval and V' C P" is open, will still be a subbasis for the
compact-open topology on H (5, Chapter XII].

LEMMA 2.13. Let (P", L) be an R™-geometry. Then:

(1) n: H — (L£,COT) is a continuous open surjection.

(2) OM C POT. Hence the inclusions hold: F C OM(= OJ) C
POT C COT.

Proof. (1) It is sufficient to show that 7 is an open mapping. Let
Nt (L3, Vi) be a basic open set in H. Then we get n(N?(Z;, V;)) ={K € L :
there is a representation & : R — K with k € N}(1;, V;)}. We have to
show that 77~ (n(M(L;, Vi))) is open in H. Let L € n-1(n(n}(L;, Vi),
then (1) € n(N}(I;,V;)). Hence there is a representation I’ : R — n(l)
with ' € NF(I;, V;). Let I=Y(U(;)) = I/, then 1 € N}(I}, V). Next we shall
show that [ € NT(I,V;) C n Y (n(N}(I;, V;))). Let a« =171 ol : R — R,
then a(I;) = I. For g € NT(I],V;) let ¢’ = goa, then ¢'(L;) = g(a(f;)) =
g(I;) € Vi. Therefore, n(g) € n(N}(L;, Vi) and g € n~' (n(N (L, V2))).
Hence, n: H — (£,COT) is an open mapping.

(2) Let O be open in P™ and L € Mp. Since n: H — (L, POT) is
an open mapping, let [ : R — L be a representation of L with I(z) € O.
Then L = n(l) € n((z,0)) C Mo. : O

3. The sequential topology induced by the sequential con-
vergence n*

DEFINITION 3.1. Let Y be an arbitrary set, X a 1° countable space,
and f: X — Y a surjection. We define on the set Y the sequential
convergence to be

Un ’f_" Y=
for each ¢ € X with f(z) = y, there exists a sequence (z,) in X such
that z, — 2z in X and f(z,) = yn.

We can also define on Y the notation of accumulation (we say that (y,)
accumulates at y) to be

Yn >f—0 Y =
for each z € X with f(z) = y, there exists a sequence (z,) in X such
that x, oz in X and f(x,) = yn, where the symbol z,, o = means
that the sequence (z,) accumulates at z.
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LEMMA 3.2. Let Y be an arbitrary set, X a 1° countable space, and
f: X — Y asurjection. Let (y,) be a sequence inY andy € Y Then:

(1) Ifyn -, y, then y, o y.
(2) Let (yn,,) be a subsequence of (yy,,). Then:

(a) [on if» u] = [y ;f—» y.
(b) [Ynn =2yl = [yn =2 4.

THEOREM 3.3. Let Y be an arbitrary set, X a 1° countable space,
and f : X — Y a surjection. Then f* is a sequential convergence
satisfying the condition (L3).

Proof. It is easy to check that f* satisfies the conditions (L1) and
(L2). We prove that f* satisfies the condition (L3). Let (y,) be a given
sequence in Y and y € Y with the following property:

Y(¥nm) 3Ynm, ) Yrim, Ly

Then we will show that ¥y, EAR y. Let x € X with f(z) = y. For each
n € N define A, := f~1(yn), then (4,) is a sequence of subsets of X.
We call (A,,,,) a subsequence of (A4,) if n; <ng < -+ <N+ --.

Step 1. First we show that for all nbds U of z and for all subsequence
(Ap,,) of (Ay), there exists an element A, , € {An,, Apny, Ang, -+ } such
that A,,, NU # 0.

Let U be a given nbd of z and a given subsequence (A,,,) of (4,). Since

f(An,) = flf *(yn,.)] = Yn.., we have a subsequence (yn,,) of (yn).
By the given condition, there exists a subsequence (yn,,, ) of (yn,,) such

that yn,, —— y. By definition, there exists a sequence (xnmk) in X such
that z,,, — z in X and f(2n,., ) = Yn,,, - Since Tn,, — zin X with

Tn,,, € f’l(ynmk) = An,,, € {An,;Any, Ang, -} and U is a nbd of z,
the assertion is clear.

Step 2. Next we show that for all nbds U of x and for all subsequence
(An,,) of (A,), there exists an integer N such that
Ap,NU #Q for all n, > N.

Let U be a given nbd of z and a given subsequence (4,, ) of (4,). As-
sume that there are no integers N such that A, NU # 0 for all n,, >
N. We start with N = n;, then there exists n,,; > n; such that
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Ap,,, NU = 0. Let N = n,y,, then there exists Ny, > My, such that
A, NU = @, and so on. Hence, we have a subsequence (Anmk) of (Ay)
such that Anmk NU = { for all n,,, € N, this leads to a contradiction
to Step 1.

Step 3. Since X is 1° countable, let C = {U,|Up+1 C U, for n € N}
be a decreasing countable basis at the point z. For U; we may assume
that A, NUy # 0 for all n € N. For U; there exists an integer k; such
that A,NUs # 0 for all n > k;. For n = 1 to k; choose z1,- -+ ,zx, € Us.
For Uz and the subsequence {A,}nen — {41, - , Ak, }, there exists an
integer ks such that A, NUs # 0 for all n > k,. Similarly, for n = k; + 1
to kg, choose xp;4+1, - ,Zk,, and so on. By this process, we have a
sequence (z,) which converges to z and f(z,) = Yn. a

In the proof of Theorem 3.3 we have the following corollary.

COROLLARY 3.4. Let Y be an arbitrary set, X a 1° countable space,
and f : X — Y a surjection. Let (y,) be a sequence in Y and y € Y.
Let x € X with f(z) =y, and for each n € N let A, = f~'(yn). Then:

(1)yn~]§+y¢:>VU:nbdofx, AN Va>N:A,NU 0.
(2) ypo =ey <=V U:nbdofz, VN 3n>N:4,NU#0.

DEFINITION 3.5. Let Y be an arbitrary set, X a 1° countable topo-
logical space, and f : X — Y a surjection. Then the topology T/" on
Y is the sequential topology induced by the sequential convergence f*.

LEMMA 3.6. Let (Y,7) be a Ty-space, X a 1° countable space,
and f : X — (Y,7T) a continuous surjection. Then the sequential
convergence f* is an L*-convergence, i.e., f* satisfies the condition (L4).

Proof. Assume that a,, AR a and a, Lb Let f(z) = a, then there
exists a sequence (z,) in X such that z, — 2 in X and f(z,) = ap.
Let f(y) = b, then there exists a sequence (y,) in X such that y, — y
in X and f(yn) = an. Since f : X — (Y,7T) is continuous, we have
flzn) = an Z, f(z) =aand f(y,) = an Z, f(y) = b. Since (Y,7T) is
a Ty-space, we have a = b. O

THEOREM 3.7. Let Y be an arbitrary set, X a 1° countable space,
and f : X — Y a surjection. Let T3 be the topology on'Y be generated
by the subbasis 3" = {f(U)|U is open in X}. Let T?" be the sequential
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topology on Y. Assume that the sequential convergence f* is an L*-
convergence, i.e., f* satisfies the condition (L4). Then f : X — (Y, T/")
is an open mapping, that is, Ty C T/".

Proof. We prove that f is an open mapping. Let U be open in X.
Then we show that Y — f(U) is closed in (Y, f*). Assume that Y — f(U)
is not closed in (Y, f*). Hence, there exists a sequence (y,) in Y — f(U)

*

which converges to y € f(U). Let x € U with f(x) = y. Since y, EAN y
in Y, there is a sequence (z,) in X such that z,, — z and f(z,) = y,.
Therefore, z,, € U for sufficiently large n, consequently we have f(z,) €
f(U). This leads to a contradiction to (y,) in Y — f(U). Hence, f(U) is
open in (Y,T1"). O

COROLLARY 3.8. Let (P", L) be an R™-geometry and V : P™ x P\
A\ — L the join mapping. Let TV be the sequential topology on L
induced by the sequential convergence V*. Assume that F = OM. Then
the following two properties are equivalent:

(1) The sequential convergence V* is an L*-convergence, i.e., V* sat-
isfies the condition (L4).
(2) F=0M =TV and (L,0M) is a Ty-space.

Proof. (1) = (2). By Theorem 3.7, the join mapping V : P* x P\
A — (L, TV") is an open mapping. It is sufficient to show that V : P" x
P*\ A — (L,TV") is continuous. Assume that a sequence ((an,bn))

converges to (a,b) in P" x P"\ A. We have to show that a,, Vb, Y, avb.
Let (z,y) € P* x P*\ A with zVy = aVb. Since F = OM, by Lemma
2.5, we have a Vb C liminf(a, V b,), hence we have a sequence ((zn,yn))
in P* x P* \ A such that (zn,yn) — (z,y) and zp, V yn = ap V by.
Hence V : P* x P*\ A — (L£,TV") is continuous. Since (£,OM)
is a 2° countable space, the condition (L4) implies that (£,0OM) is a
Ty-space.

(2) = (1). If Ly % Ly and L, 5 Ly, then L, * L; and L,
Ls. Since (E,TV*) is a Ty- and 2° space, we have L = Lo. ]

Let (P™, L) be an R™-geometry. Let H be the set of all parametriza-
tions of lines with the compact-open topology and n : H — L the
quotient mapping. Since H is a 2° countable space, we consider the
following sequential convergence on the line set £:
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DEFINITION 3.9. Let (P", L) be an R™geometry. Let n: H — L
be the quotient mapping. We define on the line set £ a sequential
convergence to be '

Ly 1 L=
for each | € H with n(l) = L, there exists a sequence (l,,) in H such
that I, — [ in ‘H and n(l,) = L,. That is, let [ : R — L be an
arbitrarily given representation of the line L. Then for each n € N there
is a representation l,, : R — L, such that [, — [ in the compact-open
topology of (£, H).

For o € R and | € H, the composition loa € H, so that T(a, 1) = loa
defines a mapping R x H — H which is continuous in [5, 2.2 Theorem).

Note that if L,, —— L, then for a given representation [ : R — L there
are representations I, of L, such that l, — [ in the compact-open
topology of H. Let ' : R — L be another representation of the line L,
then we can find representations I/, such that I, — I’ in the compact-
open topology of H. For [} : L — Rlet ¢ :=1"'ol': R — R. Since
the mapping T'(p, ) : H — H is continuous with T'(p,1) = I, hence we
have I}, = T(p,l,) — U = T(p,1).

LeEMMA 3.10. Let (P™, L) be an R™-geometry. Letn : H — L be the
quotient mapping, n* the sequential convergence and T the sequential
topology on L. Then the following properties are equivalent:

(1) The sequential convergence n* is an L*-convergence.
(2) (L, T7") is a Ty-space.

Proof. (1) = (2). By Theorem 3.7, n : H — (L£,T™) is an open
mapping. Next we show that n : H — (£, 77 ) is continuous. Let
ln, — 1 in ‘H. Let I’ € H with n(l') = n(l). For I”! : L — R let
@=1"1ol'": R— R. Then we have I/, = T(p,l,) — I' = T(p,1) and
n(l},) = n(l,). Therefore, n is continuous mapping. By Lemma 1.2 and
Lemma 2.13, COT = n*. Since (£,T") is 2° countable space and every
sequence in (£,T"") has at most one limit, hence (£,T"") is a Ty-space.

(2) = (1). Assume that (£,T7") is a Ty-space. It is easy to check
that the sequential convergence n* satisfies the condition (L4). d

THEOREM 3.11. Let (P", L) be an R"-geometry. Let n: H — L be
the quotient mapping. Assume that the sequential convergence n* is an
L*-convergence. Then:

(1) (£, T7") is a Ty-space.
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(2) n: H — (L, T7) is a continuous open surjection and COT =
T,
(3) (L, T™) is a 2°-countable space.

THEOREM 3.12. Let (P", L) be a topological R"-geometry with the
T topology. Then the following properties are equivalent:

(1) The sequential convergence n* is an L*-convergence.

(2) (£,T7) is a Ty-space.

(3) If a sequence of lines (L,,) converges to L in T" , then the sequence
(L) converges to L in the hausdorff topology H.

(4) n:H — (L, H) is continuous.

Proof. By Lemma 3.10, the assertions (1) and (2) are equivalent.

(2) = (3). Assume that a sequence of lines (L,) converges to L in
T7. Let | be a representation of L, and for each n € N let I,, be a
representation of L, such that (l,) converges to ! in the compact-open
topology of H. We have to show that L C liminf L, C limsup L, C L.
Since OM C T7", we have the first inclusion L C liminf L,. Let y €
limsup Ly, then there exist a subsequence (yn,,), Yn,, € Ln,, such that
Ynm, — Y. Assume that y ¢ L. Choose a point y; € L and let I(x1) = v,
then I, ,(z1) — I(z1) = y1. Since the join operation is topological, we
have I, (%1) V Yn,, — l(z1) Vy in T7". On the other hand, we have
Ln,, = ln, (1) V Yn,, — L in T7". By the assumption (2), we get
L =1I(z1) Vyin T, this leads to contradiction, hence y € L.

(3) = (4). Let I, — | in ‘H. Since n: H — (L, T™") is continuous,

we have n(l,,) -, n(l). By (3), we have n(l,) — n(l) in (£, H). Hence,
n:H — (L, H) is continuous.

(4) = (2). By (3), H C T" and (L, H) is a Ty-space, hence (£, T"")
is a Ty-space. O

We use T'(d) to denote the usual topology of P". Denote by T'(d?)
the usual product topology on P™ x P™ \ A. Let p,q € R with p < q.
For an R"-geometry (P", L), we define the two mappings as follows:

Ppg: H—P* x P\ Al - (I(p), lq)),

¢p: H—P": 1> (p).

It is clear that two mappings ¢, 4, ¢, are continuous surjections and
1N =V o ¢y 4. Furthermore, the evaluation mapping

e:HxR— P":e(l,z) =1(z) and
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the mapping
E:H x (RxR\AR) — P*xP*"\ A: E(l,z,y) = (I(z),(y))

are continuous surjections, where Ag = {(z, z)|z € R} is the diagonal.

LEMMA 3.13. Let p,q € R withp < q. Let (P™, L) be an R"-geometry.
Then:
(1) The sequential convergences ¢}, ,, ¢, €" and E* are L*-convergences.
(2) Let T%.a,TE" be the sequential topologies on P™* x P\ A in-
duced by the L*-convergences ¢}, ., E* respectively. Then T(d?) C
T =T

Proof. (1) By Lemma 3.6, the convergences ¢, ,, ¢y, e* and E* satisfy
the condition (L4).

(2) Since two mappings ¢y, and E are continuous, we have T'(d?) C
T%.a and T(d?) C TF". Let ((an,b,)) be a sequence in P™ x P"\ A
and (a,b) € P™ x P*\ A. Assume that (a,,by) ] (a,b). We have
to show that (a,,bn) £, (a,b). Let (I,u,v) € H X (R x R\ Agr) with
({(u),l(v)) = (a,b). Define a function a : R — R to be

u—v
afx) = T+u— ——0p.

pP—q p—q
Let ! =l o «, then (I'(p),!'(q)) = (a,b). Since (an, by) ) (a,b), there
exists a sequence (I%) in H such that I, — I’ in H and ¢pq(l,) =
(I.(0),11.(q)) = (an,bn). Let I, = I/, oo~ Hence we have a sequence
((ln,u,v)) in H x (R x R\ Ag) such that (l,u,v) — (l,u,v) in
H x (Rx R\ Ag) and E(lp,u,v) = (an, by).
Conversely, assume that (an. by) =, (a,b). We have to show that (ay, b,)
$h.q

2% (a,b). Let I € H with ¢, 4(1) = (I(p), (g)) = (a,b). Since E(l,p,q) =
$p.4(l) = (a,b), by assumption, there exists a sequence ((ln,Pn,qn)) in
H x (R x R\ AR) such that (I, pn,qn) — (I,p,q) in H x (R x R\ AR)
and E(l,, pn,qn) = (an, by). We define a function o, : R — R to be

-9 p—q
for each n € N. We can check that the sequence (ay) converges to
identity function i : R — R in RE. Since the mapping T : RE x H —
H is continuous, we have T(ap,l,) = lp o an — T(3,1) in H and

Bp,g(T(ansln)) = (an, bn). O

an(m) =
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From now on, we assume that the sequential convergence 1* is an
L*-convergence (see Definition 3.9 and Lemma 3.10).

THEOREM 3.14. Let p,q € R with p < q. Let (P™, L) be an R"-
geometry. Let ¢pq : H — (P™ x P*\ A,T(d?)) be the continuous
mapping defined above. Then:

(1) Let T% be the sequential topology on P™ x P™\ A induced by
the L*-convergence ¢ .. Then ¢pq: H — (P™ x P™\ A, T%)
is a continuous open mapping. In particular, the join mapping
Vi (PP x PP\ A, T%a) — (L, T") is a continuous mapping.

(2) If ¢ppgq : H —> (P x P\ A, T(d?)) is an open mapping, then
Vi (P x PP\ A, T(d?)) — (L£,T™) is a continuous open map-
ping. In particular, T(d®) = ¢}, and the topologies F,0J =
OM,POT,COT =T" and H for L coincide.

Proof. (1) By Theorem 3.7, ¢pq : H — (P™ x P"\ A, T%.4) is an
open mapping. We have to show that ¢, , : H — (P" xP™\ A, T¢;»4) is
also continuous. Assume that [, — [ in H. Then we have to show that

(ln(p), 1n(@) 2% (1(p),U(g)). Tet g € H with Ppq(9) = (9(p),9(q)) =
(1(p),1(q)). For 71 : L — Rlet p = I"!og. Since the mapping T(y, ) :
H — H is continuous, hence we have T(p,l,) =l, 0 p — T(p,l) =g
and ¢p,o(T(p,1n)) = (In(p),ln(q))- Since Ppq: H — (P"XP™M\A, T¢;’q)
is a continuous open mapping, then ¢, , is an identification map. By
[5, Chapter VI, Theorem 3.1], V : (P* x P\ A, ¢% ) — (L,T7) is
continuous.

(2) By [5, Chapter VI, Theorem 3.1], V : (P" x P"\ A,T(d?))
— (£, T"") is continuous. By Lemma 3.12, the topologies F,0J =
OM,POT,COT = T"" and H for L coincide. O

Lemma 3.13 implies the following facts. Let (a,) and (b,) be two
convergent sequences with limits a and b respectively. Assume that
an Vb, — aVbin (L, T7). Hence, for | € H with n(l) = a V b, there
exists a sequence (I,,) in H such that I, — [ in H and n(l,) = a, V by,.
Let I(p) = a,l(q) = b,1(pn) = a, and I(g,) = b,. Assume that p, — p
and g, — ¢ in R. We define a function o, : R — R to be

an(x) — pn - q'n:L_ +pn _ pn - Qn

pP—q P—q
for each n € N. We can check that the sequence (ay) converges to
identity function i : R — R in RF. Since the mapping T : RExH — H

is continuous, we have T'(an,ln) = In 0 ap — T'(4,1) in H. Since ¢y 4 is
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continuous, we have ¢p (T (o, ln)) = (@n,bn) — épq = (a,b). Hence,
we have a sequence (I], = [, 0a;,) such that I/, — [ in H with I} (p) = a,
and {},(q) = by.

For an R™-geometry (P™, L), we assume that the join mapping V :
P x P*\ A — (L,T7) is a continuous open mapping. Let (L)
converge to L in the topology T" . Let [,l, be representations of lines
L and L, such that [, — [ in H. By [5, Chapter XII, 7.4, 7.5], for
each ¢ € R and sequence z,, — z we have [,(z,) — [(z), that is,
the evaluation mapping e : R x H — P" : e(z,l) = l(x) is continuous.
Conversely, for each y € liminf L,, we have a sequence (y,) converging
to y. Since (£,T7) is a Ty-space, we have y € L. Let z,,z € R such
that I,(zn) = y» and I(z) = y. Does the sequence (z,) converge to x in
R?

4. Order- and bounded-condition

Let (P", L) be an R"-geometry. Since each line is homeomorphic to R,
there is a natural notion of intervals in lines. If L € £ is a line and
p,q € L are two (not necessarily distinct) points on L, then we shall
denote the interval which consists of all points on L between p and q
by the symbol [p,¢]. The open interval between p and ¢ is defined as

(p,q) := [p,q] \ {p, q}-

The following axioms are introduced by H. Klein in [8]

DEFINITION 4.1. Let (P", L) be an R™-geometry. Given two subsets
A, B C P", we define

[A,B] = U [a, b],
acAbEB,
i.e. [A, B] is the set of all points between A and B.

Let (P™,L) be an R"-geometry. Here we shall introduce the following
additional axioms:

(B) (Bounded-axiom) If A,B C P™ are compact, then [A, B] is also
compact.

(O) (Order-axiom) Let ((an,cn)) be a sequence converging to (a,c) in
P" x P*\ A. If a sequence (b, ) converges to b in P™ with b, € [an,¢,] C
an V by, for all n € N, then we have also that b € [a,c] C aVb.
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THEOREM 4.2. (Order-condition) Let (P™, L) be an R™-geometry.
Then the following two properties are equivalent:

(1) T(d?) = T%.a.
(2) The join mapping V : (P™ x P*"\ A, T(d?)) — (L, T™") is contin-
uous and the given R"-geometry (P™, L) satisfies Order-axiom.

Proof. (1) = (2). By the assumption T(d?) = ¢p 4 and Theorem
3.14(1), the join mapping V : (P™ x P"\ A, T(d?)) — (L, T7") is
continuous. Next we show that the R"-geometry (P", L) satisfies Order-
axiom. Let ((an,c,)) be a sequence converging to (a,¢) in P" x P\ A.
Assume that a sequence (by,) converges to b in P" with b, € [an,cs] C
an V by for all n € N. Note that we consider Order-axiom under usual
topologies T'(d) and T'(d?). By the assumption T'(d?) = $p.q> We have

*
¢P»q

(anybp) — (a,b). Let I € H with ¢p4(1) = (I(p),1(¢)) = (a,c). Then
we have a sequence (l,) in M such that I, — [ in H and ¢, 4(l,) =
(In(p),1n(q)) = (@n,cn) Let I = [p,q], hence we have I,,(I) = [an,c,] C
an V by for all n € N and I(I) = [a,c] C a V b. Since b, € [an,c,] for
all n € N, there exists a sequence (x,) in I with [,(z,) = b,. Since I
is compact, there exists a subsequence (z,,,) of (z,) which converges to
x € I. We have also In,, (€n,,) = bn,, — I(z) = b, hence b € [a,c].

(2) = (1). We show that T%»« C T(d?). Let ((an, bs)) be a sequence in
PP xP™\A and (a,b) € P"xP"\A. We have to show that if (a,, b,) —

(a,b) in (P x P\ A, T(d?)), then we have also (ay, b,) ) (a, b). Since
the join mapping V : (P" x P*\ A,T(d?)) — (£,T7") is continuous,
we have a, V b, ~— aVb. Let I € H with ¢, (I) = ({p),1(q)) = (a,b).
Hence there exists a sequence (l,) in H such that I, — [ in H and
n(ln) = an V by.

Step 1. Let l,(pn) = an,ln(gn) = by, for all n € N. We shall show that
Pn — P,qn — q in R respectively. Assume that the sequence (p,) does
not converge to p in R. There exists an open interval (u,v) in R with
p € (u,v) and a subsequence (pp,,) such that {p,, |[nm € N} N (u,v) =
0. Since l,, — 1 in H, we have (In, (u),ln,, (v)) — (I(u),l(v)) in
P xP"\A. On the other hand, we have I, (pn,.) = @n,, & ln,, ((u,v)) =
(I (w)y ln,, (V) C an,, V by, and an,, — a € (I(u),l(v)) C a Vb, this
leads to a contradiction to Order-axiom.
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Step 2. By Lemma 3.13, we have another sequence (I/,) in H such that

I, — 1 and ¢, (1) = (an,bn). Consequently, we have (an,by) Yrg
(a,b). O

THEOREM 4.3. (Bounded-condition) Let (P™, L) be an R"-geometry.
Assume that T(d?) = ¢y 4+ Then (P", L) satisfies also bounded-axiom.

Proof. Let A, B C P™ be compact. Assume that [A, B] is not com-
pact. Then there exists a sequence ({(an,b,)) in A x B and a sequence
(Pn), P € [an,bn] \ {@n,br} such that (p,) is unbounded in P™.. Since
A x B is compact, there exists a convergent subsequence ((an,,,bn,,))
which converges to a point (a,b) € A X B. Let a # b. We may assume
that a,, # b,, for all n,, € N. Since a,,, Vb,, — aVvbinT 7 for
l € H with ¢y, 4 = (I(p),(q)) = (a,b), there exists a sequence (I,,,) in H
such that l,,,, — lin H and ¢, 4(n,,) = (n,. (2), In (@) = (@nrny i)
Choose a relative compact open set U which contains I([p, q]) = [a, b].
there exists N such that for all m > N U([an,,,bn,,.]) U [a,b] € U. Con-
sequently, U([an,,, bn,]) U [a,b] is bounded, a contradiction. Let a = b.
Without loss of generality, let the sequence ((an,b,)) converges to (a,a).
We may assume that a, # b, for sufficiently large n € N. By lemma
2.1, there exists a point ¢ € limsup(a, V b,) with ¢ # a. Hence there
exists a sequence qn,, € an,, V by, which converges to ¢. Therefore,
VG = bn, V @n,, — aV q. Therefore, we have the same argument
in the case a # b. O
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