Effect of Biocide (NaOCl) in Industrial Cooling Water on Biofilm Formation and Metal Corrosion.

공장냉각수에서 Biocide (NaOCl)가 생물막 형성 및 금속 부식에 미치는 영향

  • 강용호 (영남대학교 생물산업공학부) ;
  • 박대규 (포항산업과학기술연구원)
  • Published : 2002.03.01

Abstract

Cooling water sampled at Pohang Steel Company, Korea, was used to study the effect of biocide (NaOCl) on biofilm formation and metal corrosion. Planktonic microorganisms were killed in the presence of biocide (0.2% NaOCl) within 1.5 h, but not sessile microorganisms in biofilms even after one week. Black color of biofilms, possibly due to the activity of sulfate reducing bacteria, were made with the natural cooling waters, while orange color of biofilms were formed when cooling waters were autoclaved or when 0.2% NaOCl was added to the natural cooling waters. Microbially influenced corrosion rate in black color of biofilms was 2.3 fold higher than that in orange color of biofilms.

포항제철소에서 사용하는 살균제와 공장냉각수를 사용하여 실험실에서 생물막 형성과 금속부식에 대한 연구를 수행하였다. 부유성 미생물은 biocide (NaOCl, 0.2% w/v)을 첨가하면 1.5 시간 내에 모두 사멸하였으나, 생물막에 있는 고착성 미생물은 일주일이 지나도 사멸이 되지 않았다. 생물막 형성은 공장냉각수를 고온고압으로 멸균하거나, biocide(NaOCl)를 첨가하였을 경우에는 주황색의 생물막이 형성되었으나, 공장냉각수를 그대로 사용하였을 경우에는 SRB 활성에 의한 흑색(FeS)의 생물막이 형성되었다. 흑색의 생물막이 형성된 곳에서의 금속부식 속도는 주황색의 생물막이 형성된 곳의 금속부식 속도보다 2.3배 더 빨리 진행되었다.

Keywords

References

  1. Almeida,M. and F. P de Franca. 1998. Biofilm formation on brass coupons exposed to a cooling system of an oil refinery. 1 Ind. Microbiol. Biotechnol. 20: 38-44.
  2. Angell, P and K. Urbanic. 2000. Sulphate-reducing bacterial activity as a pararneter to predict localized corrosion of stainless alloys. Corr. Sci. 42: 897-912.
  3. Batista, J. F., R. F. Pereira,J M. Lopes, M. F. Carvalho,M. J. Feio, and M. A Reis. 2000. In situ corrosion control in industrial water systems. Biodegradation. 11: 441-448.
  4. Batt, T. R. 1992. The use of biocides in industry. pp567-582. In L. F. Melo, T. R. Bott, M. Fletcher, B. Capdeville (eds.), Biofilms-Science and Technology, Kluwer Academic Publishers, Boston.
  5. Flemming,H. C. and J. Wingender. 2001. Relevance of microbial extracellular polymeric substances (EPSs)-Part II: Technical aspects. Water Sci. Technol. 43: 9-16.
  6. Hamilton, W. A 1995. Biofilms and microbially influenced corrosion, pp171-182. In H. M. Lappin-Scott and J. W. Costerton (eds.), Microbial biofilms, CambridgeUniversity Press, Cambridge.
  7. ayaraman, A, F. B. Mansfeld, and T. K. Wood. 1999.Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J. Ind. Microbiol. Biotechnol. 22: 167-175.
  8. McFeters, G. A, F. P Yu, B. H. Pye, and P S. Stewart. 1995. Physiological methods to study biofilm disinfection. J. Ind. Microbiol. 15: 333-338.
  9. Potekhina, J. S., N. G. Sherisheva, L. P Povetkina, A P Pospelov, T. A Rakitina, F. Warnecke, and G. Gottschalk. 1999. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl. Microbiol. Biotechnol. 52: 639-646.
  10. Rao, T. S., T. N. Sairam, B. Viswanathan, and K. V. K. Nair. 2000. Carbon steel corrosion by iron oxidizing and sulphate reducing bacteria in a freshwater cooling system. Carr: Sci. 42: 1417-1431.
  11. Tanji, Y., Y. Morono, A Soejima, K. Hori, and H. Unno. 1999. Structural analysis of a biofilm which enhances carbon steel corrosion in nutritionally poor aquatic environrnents. J. Biosci. Bioeng. 88: 551-556.